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Abstract 

All the connected components of the moduli space of flat connections on W(2) and SO(3) (trivial 
and non-trivial) bundles over closed oriented surfaces are determined. The symplectic structure and 
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B.V. 

Subj. Class.: Differential geometry 
1991 MSC: 53CO5; 53ClO 
Keywords: Moduli space; Flat connections; Surfaces 

1. Introduction 

In this paper we shall study the moduli space M” of flat connections on principal G- 
bundles over closed orientable surfaces, where G is SU(2) or SO (3). 

Each moduli space is made up of several strata Mt, each of which is a smooth k- 
dimensional manifold. In the case of SO (3), the moduli space of flat connections on the 
trivial bundle is denoted MO(Z) (and the strata M!(Z)), and the corresponding space for 
the non-trivial bundle is denoted MO (- Z) (and the strata Mt (-I)). The detailed structure 
of the individual strata are described in Theorems 2.1, 3.1, 3.2, 3.7,3.9, 3.20 and 3.24. 

There is a standard symplectic structure on the infinite dimensional space of all connec- 
tions over a closed oriented surface. It is known that this induces a symplectic structure 
on the maximal stratum of MO. In Section 6 we prove that a symplectic structure is also 
induced on each of the lower-dimensional strata of MO. The volume of the maximal stratum 
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Table 1 
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Group/bundle Stratum Number of components Volume 

SU(2)trivial bundle 

SO (3)trivial bundle 

S 0 (3) non-trivial bundle 

J%*g-2) l(0 if g = 1) 

1 

2*g 

l(Oifg = 1) 

M& (0 

M;g_2U) 
M;(Z) 

M’&-*)(-Z) 

1 

2*g - l(Oif g = 1) 

&[24g+7.22g+4] 

l(Oif g = 1) 

JJq_*(-Z) 2*g - l(0 if g = 1) 

A@-0 &[168 - 481 

21-Qvol (sU(2))2g-* 

CC,“=, & 

; [ nvol (;ul2w]2!3 

; [nvl,~(:~(2)i](*~-2)/3 

2’-‘Rvol (w(2))*@ 
c-l)“+’ 

CELl112g-2 
; [nvo~ (;1:(2))](*8-2)/3 

Note: M:(z) is the stratum of dimension k. 

of MO has been determined in other works ([3,9], for instance). In Section 7 we work out 
the volumes of the lower-dimensional strata Mf (z) , for SU (2) and S 0 (3). 

Table 1 gives a summary of some of the results of this paper (the volumes of the maximal 
strata are not computed in the present work; see [9, (3.26,28),(4.73)]). 

References to the literature on flat connections over surfaces may be found in [2,3,9,10]. 

2. The moduli space of flat SU (2) connections 

Let Z be a compact connected oriented two-dimensional manifold of genus g > 1. As 
is well known, the moduli space MO of flat SU(2) connections over _E may be identified 
with the quotient K;’ (Z)/SU(2), where K, is the product commutator map 

K, : SU(2)2R + SU(2) : (al, bl, . . . , ag, bg) I--, bg’a,‘b,a, . .b~‘a~‘tqal, 

(2.1) 

and SU(2) acts on K;’ (I) by conjugation in each component (Section 5 has some detail 

on this identification). In this section we shall use this identification of MO, along with 
its topology and smooth structure, with K;‘(Z)/SlJ(2). The main result of this section 
is: 
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Theorem 2.1. The moduli space MO is connected. 
Moreover MO is the union of disjoint sets M!&2g_Zv M& and Mi, where: 

(i) M&,g_Z) is empty if g = 1, while for g > 2 it is a smooth connected manifold of 
dimension 3(2g - 2); 

(ii) MO 21: is a smooth connected 2g-dimensional manifold, diffeomorphic to the quotient 

(S1)2fi\{f1]2”/ W, where S’ is the usual circle group of unit modulus complex num- 
bers, and W is a two-element group (I, n} acting on (S’)2s by n . (21, . . . , 2~) = 

(z,‘, . . ., z$; 

(iii) Mi is a set consisting of 22s points. 

The proof of this will be completed by combining several results we shall prove below. 
However, we shall sketch first the general outline of the argument. The conjugation action 
of SU(2) on SU(2)2s carries K,‘(Z) into itself and we may decompose Kg’ (I) according 
to the type of isotropy groups: 

K;‘(I) = F3(2g-2) u F2g u @I) 2g , (2.2) 

where 
(i) .F3(2,-2) is the set of points where the isotropy group is {*Z}, and 

(ii) .FQ the set of points where the isotropy group is a torus in SU(2). 
We have then the corresponding decomposition 

M” = M:i2s-2) u M$ u M;, 

where 

Mic2n-2j = F3(2~-2)/su@) and M$ = F2g/su(2), 

(2.3) 

(2.4) 

The connectivity of MO and the structures of the strata M&2s_2) and M!& will be obtained 

by analyzing the sets Kg’ (I), .F3~2~-2), and 3~~. 

2.1. The isotropy groups 

The following simple result (Section 3.7 in [ll], Proposition B.111 in [4]) is very 
useful: 

Lemma 2.2. Let H be a compact connected Lie group, equipped with an Ad-invariant 
metric. Consider the map 

K, : H2’ + H : (xl, ~1,. . . ,xr, y,.) H y,‘x,‘y,x,. . . y;‘x;‘ylxl, 

and the conjugation action of H on H2’ given by (writing x = (x1, yl , _ . , x,, y,)): 

H x H2’ + H2’ : (a, x) H vx(a) = (axla-‘, ayla-‘, . . . , axra-‘, ayra-‘). 
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For x E H, let Z(x) be the set of elements of H which commute with x. Thus the isotropy 
groupZ,oftheactionofHatx=(xl,yl,... , xr, y,) is equal to Z(xl) n Z(y)) n . . . n 
Z(x,) n Z(y,). Then 

ker(dlc, I_:) = Lie algebra of 1, = ker dy, le 

(where e is the identity element of H). 

The following describes the isotropy groups of the conjugation action of SU(2) on 
SU(2)k. 

Lemma 2.3. Let x = (x1, . . . , xk) E SU(2)k. The isotropy group at x of the action of 
SU(2) on SU(2)k is either SU(2), or a maximal torus T, or {%I): 

SU(2) if eachxi E {fl}; 
a maximal torus T if all the xi, xj commute with 

the isotropy group = 
I 

each other (thereby all lying in a 
maximal torus T) but are not all f I; 

I I*4 tf there exist two elements in 

{Xl,..., xk}which do not commute. 

Proof The case where the isotropy group is SU (2) is clear. The other cases may be deduced 
from the following observations. If a, b E SU(2), b # *Z, and ab = ba, then a belongs to 
the maximal torus containing b; this is readily verified by taking b to be a diagonal matrix. 
On the other hand, suppose ab # ba, and consider x E Z(a) fl Z(b), x # fl; then, taking a 
to be diagonal, we see that, since a # fl, x is also diagonal and, since x # fl, this implies 
that b is diagonal, thus contradicting ab # ba. Thus Z(a) f? Z(b) = {%Z} if ab # ba. 0 

2.2. The product commutator map 

We list some useful observations about the product commutator map: 

Lemma 2.4. Let r be an integer > 1, and consider the map 

(9 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

K, : SU(2)*’ + SU(2) : (xl, yt, . . . ,x,., yr) H y,?x,‘y,x,. . . y;‘x;‘y,x,. 

The map K, is surjective. 
The critical points of K, all lie in Kr-’ (I). 
K;‘(Z) is the set of criticalpoints of KI. 

Zf(Xl,Yl,... ,xr, yr) isacriticalpointofK, then Z(xt)nZ(yt)n..-nZ(x,)flZ(y,> 
is either SU(2) or a maximal torus in SU(2). 

If(Xl,Yl,... , x,., y,) is not a criticalpoint of K, then Z(XI) n Z(yl) (7. . . n Z(x,) tl 

Z(Yr) = {M- 
(Xl,Yl,..., xy, y,) is a critical point of K, if and only if xl, yi , . . . , x,. , yr all lie in 
one maximal torus in SU (2) (they commute with each other). 
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ProoJ (i) This is a general fact valid for compact connected topological groups having 
finite center, not only for SU(2). But for SU(2), it suffices to observe that any 

can be written as b-‘a-‘ba for some a, b E SU(2); for instance, 

and a = 

wherein a! is a square-root of /I. 
(ii)- follow by combining Lemmas 2.2 and 2.3. For example, for (ii), if x = (xl, yr , 

. . . , x,., yr) is a critical point of Kr then, by Lemma 2.2, the isotropy group at x of the 
SU(2) action on SU(2)2’ has non-zero Lie algebra. Then, by Lemma 2.3, all the xi, yj 
commute, and so Kr (x) = I. 0 

2.3. Decomposition of K,’ (c) into manifolds 

If c E SU(2)\{1} then, by Lemma 2.4(ii), c is a regular value of K, and so K;‘(c) is a 

smooth submanifold of SU(2)2g. So we shall focus on K;‘(Z). As noted in (2.2), we have 
the decomposition 

K;‘(I) = -T3(2g-2) u 3ig u {*I) 2g (2.5a) 

according to the isotropy type of the conjugation action of SU(2) on Kg ’ (I). Since .F3(2g -2) 

is, by definition, the set of all points on K;‘(Z) where the isotropy group of the SU(2) 
conjugation action is {fl}, it follows from Lemmas 2.3 and 2.4(iv) and (v) that 

F3(2g-2) = K;’ (1) f-l unc, (2.5b) 

where U,, is the set of all non-critical points of K,. 
If g = 1 then, by Lemma 2.4(iii), K;’ (I) consists only of the critical points of Kg and 

SO, by (2.5b), .F3(2g-2) is empty. 
Now suppose g > 2. Then, by the surjectivity of K, (Lemma 2.4(i)), we can pick 

x = h,Yl,... , xg, yg> E K;‘(Z) for which K1 (xl, yr) # I. Then, by Lemma 2.4(v), x 
is not a critical point of K,. Thus .F3(2g_2) is non-empty, if g 2 2. Thus, when g > 2, 

.F3(2g_2) = (Kg 1 UJ1(Z) is a smooth 3(2g - 1)-dimensional submanifold 

of (the open set U,, c)SU(2)2g. (2.5~) 

Next we consider 3~. By definition, 32s consists of those points in K;’ (I) where the 
isotropy group is a maximal torus in SU(2). Let T be a maximal torus in SU(2). Thus the 

map 

CD’ : SU(2) x T2g + SU(2)2g : (x, tl, . . . , t+) H (xtlx-‘, . . . , xt~x-‘) (2.6a) 

has image 3~ U {&I} 2s; this follows from Lemma 2.3. 
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Computing d@’ at a point (x, p) = (x, (rj)j), we have 

d@‘(xX, (tjuj)j) = @‘(r, p)Ad(x)[uj - (1 - Ad(f')X]. (2.6b) 

Splitting X as XII + Xl, where XII E L(T) (the Lie algebra of T) and XI E L(T)‘, we 
see that (xX, (tj uj)j) lies in ker d@’ if and only if each uj is 0 and Ad(tj)Xl = Xl, for 
each j. If some tj # fl then the condition Ad(tj)Xl = Xl is equivalent to Xl = 0, i.e. 
X E L(T). Thus the map @ ’ induces, by restriction and quotient, an immersion 

@ : (SU(2)/T) x (T2g\{H)*~) -+ SU(2)2g (2.6~) 

whose image is 3~. Examining 0, we see that it induces a continuous one-to-one map 

z : [(SU(2)/T) x (T*~\{&z)2~)]/w -+ SU(2)2g (2.6d) 

with image 3~, where the quotient [. . .I/ W is under the action of W = N(T)/T 2: {I, n}, 
the Weyl group of T, on (SU (2)/ T) x T 2g specified by 

nT . (XT, tl, . . . , tzR) = (xn-‘T, t;‘, . . . , tTg’). 

This action is free and restricts to a free action on (SU(2)/T) x (T2g\{*Z}2g), and so 
[(SU(2)/T) x (T2g\(*Z}2g)]/ W is a smooth manifold, the corresponding quotient map 
being a 2-fold covering. Since @ ’ maps closed sets to closed sets, the map F takes closed 
sets to (relatively) closed subsets of 3~~; thus @ gives a homeomorphism onto 3zg, taken 
as a subspace of SU(2) *g Since @ is an immersion, so is F. Thus . 

3zg is a submanifold of SU (2) 2s , (2.7a) 

and 3 gives a diffeomorphism onto 3~~. In particular, 

dim 3~ = 2g + 2. (2.7b) 

Thus K;‘(Z) is the union of the disjoint sets 33(zg_2), 3~, {&Z}2g, where 3s(2g-2) 

is a 3(2g - 1)-dimensional submanifold of SU(2)2g and 3~~ is a (2g + 2)-dimensional 
submanifold of SU(2)2g. 

Note that each of the manifolds making up K;’ (I) is of codimension 2 2 in SU(2)2g. 

2.4. Structure and connectivity of the sets K;’ (c) 

We will prove that each K;‘(c) is connected and, furthermore, that the manifolds 

33(2g_2) and 3zg (which make up K;‘(Z)) are also connected. 
The arguments for connectivity of K;’ (c) and 3zg will have a Morse theoretic flavor 

but we will work through detailed ‘elementary’ arguments, since these will yield additional 
facts which will be useful for other purposes. 

The space 32&is connected because it is the image of a connected space under the 
continuous map 0, as seen in (2.6d). 
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We turn now to K;’ (c). The argument will be inductive, with the following observation 
leading to the first inductive step. 

Lemma 2.5. Let r 2 1 and let C : SZJ(2)*’ + SU(2) be a product of commutators of 
some of the pairs (Xi, yi) (more precisely, C = Ci, . . . C’i, for some distinct i 1, . . . , ik E 

{I,..., r}). Then there is a difleomorphism 

lj : (SU(2)\{Z}) x c-‘(-I) + Su(2)*‘\c-‘(z) (2.8a) 

such that the following diagram commutes: 

(SU(2)\{Z}> x c-q-z) f SU(2)*‘\c-1(1) 

L prl I(C (2.8b) 

SU(2)\]Z] 

where prl is the projection on the first factor. 

Proof If p E SU(2)*‘\C-‘(I) then p is not a critical point of C (this follows from 
Lemma 2.4(iii)). Thus C is a submersion of SU(2)*‘\C-‘(I) onto SU(2)\{Z}. Moreover, 
C is a proper map. Then by Ehresmann’s theorem [ 1, 20.8, prob. 41 C is a fibration. Since 
SU(2)\{1} is contractible, it follows that C is a trivial fiber bundle. 0 

Next we have our first connectivity result for K;’ (c): 

Proposition 2.6. For any h E SU(2)\{Z], K;‘(h) . IS a smooth ma&old diffeomorphic to 
SO(3). In particular, K;‘(h) is connectedfor every h # I. 

Proof In view of the preceding result, it will suffice to prove that Krl (-I) is diffeomorphic 
to SO(3). Let 

and bo = 

then b~‘a~‘boao = -I. It is proven in Lemma 3.13 of [6] that 4 : SU(2)/{fl} H 
SU(2)2 : fx H (xaon-‘, xbox-‘) maps SU(2)/{fZ) onto K,‘(-I). Since a0 and bo do 
not commute, Lemma 2.3 says that Z(ao) fI Z(bo) = I&Z). Thus 4 is one-to-one. The map 
4 is smooth, and its derivative is given by 

4(x)-‘d@lxX = (Ad (x)(Ad (a,‘) - 1)X, Ad (x)(Ad (b;‘) - 1)X). 

Thus any X E ker @(x)-ld$]x commutes with both a0 and ba; so, since a0 and bo do not 
lie in any one maximal torus, it follows from Lemma 2.3 that X must be 0. Thus q5 has no 
critical points. Since -I is a regular value of KI (Lemma 2.4(ii)), it follows that Kc’ (-I) 
is a (compact) submanifold of SU(2)2. We conclude that q5 : SU(2)/{fZ) + KF’(-I) is 
a diffeomorphism; since SU(2)/{fZ) 2: SO(3), we see that K;‘(-I) is diffeomorphic to 
SO(3). 0 
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Let Ck be the commutator in the pair (Xk, yk) in (xl, yt , . . . , xR, yg), i.e. 

Ck : sU(2)2g -+ sU(2) : (Xl,. . . , yg) H y;‘X;’ ykxk. 

ThenK,=Cg...Ct,andso 

g 
K;‘dK, = c Ad(Cj_1 . . . Ct)-lC,T’dCj, (2.9b) 

j=l 

which implies that if some Cj is not critical at a point p then K, is also not critical at p. 
We will now prove the connectivity of K;’ (h). The argument is inductive. The strategy 

is to focus on the subset 3’ (h) of Kg’ (h) on which both Ct and C, . + . C2 are non-critical. 

As we will see, the ‘projection’ Cl : F’ (h) + SU(2)\{1, h} is a surjective submersion and 
has connected compact fibers. This will imply that 3” (h) is connected. Next, connectivity 
of K;’ (h) will be established by showing that any point in K;’ (h) can be connected by a 

path to some point on 3’ (h). 

Proposition 2.7. K;‘(h) is connected, for every integer r > 1, and every h E SlJ(2). The 
set 3“ (h), consisting of all points in K;’ (h) where Cl $ {I, h}, is also connected (and 
non-empty when r 12). 

Proofi We will write G for SU(2). It has been shown in Proposition 2.6 that K,‘(h) is 
connected when h # I. The connectedness of Kc’ (I) follows from the observation that, 
with T being a maximal torus in SU(2), the map G x T2 + K;‘(Z) : (x,a,b) H 
(xax-’ , xbx-‘) is a continuous surjection (this follows from Lemma 2.4(iii) and (vi)). 

Now let N > 2, and assume that K;‘(c) is connected for every c E SU(2) and every 
r=l,...,N-1. 

We will show first that 3” (h) is connected. The set 3’ (h) consists of all points x E G2N 
where KN(x) = h but Cl(x) 4 {I, h}, i.e. 

3’(h) = C,‘(G\(Z, h)) n K,‘(h) c G2N. 

It follows from Lemma 2.4(i) that 3 (h) # 0. Moreover, 

Ct (3%) = G\{Z, hJ, 

for if gt E G\{Z, h}, then by Lemma 2.4(i), we can choose p = (xl, . . . , yN) E G2N such 
that Ct (p) = gl and CN(P) . . . C2(p) = hg,‘, and thus p E 3’(h). 

Being a level set of KN in an open subset of the set of non-critical points of Cl, 3’ (h) 
is a smooth submanifold of G2N (by (2.9b), K N is not critical when Ct is not critical). It 
follows from Lemma 4.1 (see Section 4 for a detailed explanation) that the map Ct 13’ (h) : 
3’(h) -+ G is a submersion. If z E G\{Z, h} then the level set (C1(3~(h))-‘(z) = 
C,’ (z) 17 KN1 (h) is compact and connected, being (homeomorphic to) Kc1 (z) x K,‘, 
(hz-‘), which is connected by the induction hypothesis on KN_~. Thus C1(3l(h) : 
3 (h) + G\(Z, h} is a surjective submersion with compact connected fibers (Cl J3t (h))-’ 
(2). This implies that 3 (h) is connected : for if p, q E 3l (h), then we can choose a path 
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c : [0, l] -+ G\{Z, h} from Cl(p) to Cl (9) and then, by the submersive surjectivity of 
Cl IF’(h) and compactness of the fibers of Cl, we can find a path i: : [0, l] + F’(h) 
with C(0) = p and c”(1) E (CllF’(h)>-‘(Cl(q)); connecting C(1) to q by a path in 
(Cl ]F’ (h))-’ (Cl (4)) completes the argument. 

To prove the connectivity of Ki’ (h) it will now suffice to show that any point in KN’ (h) 
can be connected to a point in F” (h) by a path lying in Ki’ (h). To this end let p = 

(Xl 9 Yl, . . .t xN, YN) E KN’ W\F” (A); thus CI (P> E (1, h}. 

Suppose CI (p) = h # I. Then K+I (x2, ~2, . . . , XN , yN) = I. Now, as we have seen 
earlier (2Sb) and (2.7a), K,!,(Z) is the union of at most three submanifolds of G2(N-‘), 
each of positive codimension. So the point (x2, ~2, . . . , XN, yN> in the 6(N- 1)-dimensional 
manifold K,I, (G\(h)) has an open connected neighborhood in which Kill (I) is the 
union of at most three positive-codimension submanifolds. Thus there is a path [0, l] + 
G2(N-1) : t H et such that : PO = (x2, yz, . . . , XN, YN). KN-I (jt> # h for all t E [o, 11 

and KN-1 (PI) # I. Thus K~_l(ji~)-‘h # Z for all t E [0, l] and K,~-~(fTl)-~h # h. 
Then, since Kl : Kr’(G\(Z}) + G\{Z} is a submersion with compact connected fibers 
K;‘(z), it follows that there is a path [0, l] + G2 : t H pi with p; = (x1, ~1) and 

Kl(pi) = KN_l(pt)-lh. Then pt dzf (pi, it> E K,‘(h), po = p, and PI E F’(h). Thus 
we have connected the point p to a point in 3’ (h) by a path in KG1 (h). 

Now suppose Cl (p) = Z # h. We wish to show that there is a path in KN’ (h) from p to 
F’(h). Since K;‘(Z) is connected, we may assume that 

and x1 = 

Let 

Xl(t)= (f e!il) and yl(t)=yl. 

Then the path [O, 11 -+ G2 : t I-+ c(t) = (xl(t), yl(t)), starts (xl(O), yl(0)) = (xl, yt), 
and K1 (c(t)) = xl(2t) 4 {I, h} for t near 0 but t # 0. At t = 0 we have Kl(c(0)) = 
Cl(p) = I. Since KN(~) = Z and Cl(p) = Z # h, we have CN(P) ... C2(p) = h # I. 
So, by Lemma 2.4(vi), KN-1 : G2(N-‘) + G is a submersion in a neighborhood of p’ = 

(x2, Y2,. f. , XN, y,v). Then by our usual argument there is a path cN_ 1 : [O, 11 -+ G2cN-‘) 
such that CN- l(O) = p’ and, for t near 0, 

KN-I(CN-I@)) = W(W)-‘. 

Thus KN(c(t), c&l(t)) = h, and (c(t), c&l(t)) E F1(h> for Small t # O.Thus,ifh # Z, 
we have connected p to a point in F1 (h) by a path in KN ’ (h). 

Finally, suppose Cl (p) = Z and h = I. Since K[’ (I) and (by the inductive hypothesis) 
K,il (I) are connected, so is C,‘(Z) n K,‘(Z) E K;‘(Z) x K,i, (I). So we can connect 

thepointp E C,‘(Z)n K;‘(Z) tothepoint (I, b,. . ., I, b) E C,‘(Z)n Kil(Z),wherein 
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by a path lying in C,‘(Z) n K,‘(Z). So it will suffice to connect the point (I, b, . . . , I, b) 
to a point in J=” (I) by a path in KN’ (I). Now let 

x’(t) = (T e!?ir) and y’(t) = b; 

then a simple calculation shows that K’(x’(t), y’ (t)) = x’(2t). Therefore, 

KN(XI Cl’>, YI (t’>, . . . , ~1 (t’>, YI O’>, XI 01, ~1 @I) = I, 

where t’ = -t/(N - 1). 
Thus 

tt+P~t~=(x’(-~).Y1(-&),-.41(-&)~ 

Y1(-&) .*l(O,Yl(r)) 

is a path in K,‘(Z), which for t # 0, but near 0, lies on S’(Z). Of course, p(0) is 

(Z, b, . . . , I, b), the chosen starting point. Thus p(O) is connectable to a point in F’ (h) by 
a path in Ki’ (h). 0 

Finally, we prove that -T3(7_,_2) is connected. This will be done by showing that F’ (I) 
is a dense subset of .F3~~_2); since F1 (I) is connected, it will follow that so is -T3(+2). 

The density of F’ (I) will be proved by showing that the complement CF1 (I) fl .F3~2~_2) 

is contained in a finite union of submanifolds of F33(2g_2) each of codimension > 1. The 
reason why C,’ (I) fl.F3~-2) is easier to understand is that it is an open subset of C,’ (I) fl 
Kg ’ (I) = KI ’ (I) x KiJ, (I), where the first factor can be understood in explicit terms 
while the second factor can be handled by induction. 

Proposition 2.8. Let g 1 2, and recall that .F3(~_2) is the set of points in Kg’ (I) where 

the isotropy group of the conjugation action of SU (2) is (f Z}. Then the set 3’ (I), consisting 
of allpoints (x’, y’, . . . , x8, ys) in F3(+2) with commutator yl'x,' y'x' # I, is dense 
in .F3(~.-2). Consequently, F3(~-2) is connected. 

Proo$ Let G = SU(2), and C’ : G2s + G the commutator in the first pair (XI, y’). Then 
the complement of 3’(Z) in K;‘(Z) is C;‘(Z) n K;‘(Z) = K,‘(Z) x K;!,(Z). Recall 

from (2Sa) and (2.7b) that K,‘(Z) is the union of {ztZ)2 and a four-dimensional manifold, 
and, for r > 1, K; ’ (I) is the union of three submanifolds of SU(2)2’ each of dimension 
< 3(2r - 1). 

Thus if g = 2 then C,‘(Z) fI K;‘(Z) is the union of the four submanifolds of SU(2)4, 
each of dimension 5 8. Recall that, for g = 2, .F3(~-2) has dimension 3(2.2 - 1) = 9 
and is the intesection of Kg’ (I) with the open set U,, of all non-critical points of K,. 

Thus, intersecting with Unc, we see that for g = 2, CT’ (I) n .F3(~-2) is the union of four 
submanifolds of F3~~_2), each of codimension > 1. Therefore, the complement I=” (I) is, 
in this case, dense in .F3(2g_2). 
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Now suppose g > 2. Then K;!, (I) is the union of three submanifolds of G2(g-‘) each 

of dimension i 3(2(g - 1) - 1). So C,‘(Z) II K;’ (I) is the union of six submanifolds of 

SU(2)2g each of dimension 5 3(2(g - 1) - 1) +4 = 6g - 5. Since dim .Fs(~-2) = 6g - 3, 
we see that C,‘(Z) II .F3(2g_2) is the union of a finite number of submanifolds of .F3~-2) 

each of codimension 2 2. Hence, the complement F’ (I) is dense in .F3(~-2). 0 

2.5. Bundle structures over the strata of MO 

We have shown that K,‘(Z) is the union of disjoint sets .F3~2~-2), FQ, and {&Z}*g, 

where F3(+2) and 3zg are submanifolds of SU(2)2s. The moduli space MO is identifiable 
with the quotient Kg’ (Z)/SU(2). Thus we should understand the quotients 33(~-2) + 

33(+-2)/SU(2) and 32s + 3zg/SU(2). 

Proposition 2.9. For g >_ 2, the quotient space 33(~-2)/SU(2) is a manifold of dimension 
3(2g - 2) and the quotient map 3j(2g-2) + &(+2)/SU(2) is a principal So@)- 
bundle. 

Proofi We have already seen that .Fs(+2) is a smooth 3(2g - 1)-dimensional submanifold 
of SU(2)2g, the conjugation action of SU(2) on 3s(zg_2) is smooth, being the restriction of 
the action on SU(2)2s, and, by definition of 33~~_2), has isotropy group {f Z} everywhere. 
Therefore, the quotient space 33(zg_2)/SU(2) iS a smooth 3(2g -2)-dimensional manifold 
and the quotient map 33(~_2) + _?&Q_2)/SU(2) is a principal SU(%)/(fZ}-bundle (see 
Proposition 4.2). To conclude, we use the fact that SU(2)/{fZ} z SO(3). 0 

Next we shall show that 3zg + 3zg/SU(2) is a fiber bundle and identify it with a 
specific bundle over ~Q/SU(~). Let T be a maximal torus in SU(2), and W = {Z, n} the 
corresponding Weyl group acting on T by n(t) = ntn-’ = t-‘. Then, as noted after (2.7a), 
32s can be identified with [(SU(2)/T) x (T2g\(&Z}2g)]/ W. 

The quotient projection (T2g\(&Z}*g) -+ (T2g\{kZ}2g)/ W is a principal W-bundle 
(i.e. a 2-fold covering). The group W = {I, n} has a right action on SU(2)/ T in the usual 
way, with n acting by x T H xn-’ T. Thus we have a corresponding fiber bundle, with fiber 
SU(2)/T, associated to the principal W-bundle (T2g\(&Z}2g) + (T2R\{&Z)2g)/ W. 

Proposition 2.10. The quotient space 3zR/SU(2) is a manifold and the quotient map 
.?& + 32g/SU(2) is a smooth fiber bundle isomorphic (in the smooth category) to 
the jber bundle with$ber SU(2)/ T associated to the principal W-bundle (or covering) 
(T2g\{kZ}2”) + (T2”\{kZ}2g)/ W, h w ere W = (I, n} acts on SU(2)/T by XT H XT 
and xT H xn-‘T. 

Proo$ As we have seen before in the context of (2.6a), the map (with G = SU(2)) 

CD’ : (G/T) x T2g -+ G2g : (XT, tl,. . . , tzR) H (xtlx-I, . . . ,x~~x-‘) (2.10a) 
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has image .FQ U (d~Z)~g, and induces by restriction and quotient a continuous one-to-one 

map 

@ : [(G/T) x (T2R\{H}2g)]/W -+ G2” (2.10b) 

with image .Fzg, where the quotient [. . .I/ W is under the right action of W specified by 

(n E W, n # 0 

nT . (T, tl, . . . , tzg) = (xn-‘T, tr’, . . . , t2i’). 

This action is free and restricts to a free action on (G/T) x (T2g\{fZ}2g), and so the 
quotient [(G/T) x (T2g\{*Z}2g)]/ W is a smooth manifold, the corresponding quotient 
map being a 2-fold covering. As seen in (2.7b), FQ is a submanifold of G2g and 3 gives 
a diffeomorphism onto FQ. 

The natural left action of G on G/T gives a left action of G on (G/T) x T2” (which 
commutes with the right action of W), and a corresponding action on the quotient space 
[(G/T) x (T2R\{kZ}2g)]/ W. It is readily verified that @ is G-equivariant. 

These considerations may be illustrated by the commuting diagram : 

[(X7(2)/T) x (T2g\{&Z}2g)]/W -rr: Fzg 

-JP 4 P’ 

[T2g\{&Z}2g]/ W z .F2g/slJ(2) 

(2.1Oc) 

where p is obtained from the projection of (SU(2)/T) x T2g on the second factor, p’ is - 
the quotient map, and 3 is the induced map. Clearly z is a homeomorphism. 

We observe that p is a smooth fiber bundle projection: it is the G/T-bundle associ- 
ated to the principal W-bundle T2g\{fZ)2g -+ (T2R\{*Z}2g)/ W by the action of W on 

G/T (specified by n . XT H xn-’ T). As already noted, @ is a diffeomorphism and z 

is a homeomorphism. Thus the projection .Fzg 3 3zg/ G is a submersion if and only 

if 3zg/G is equipped with the smooth structure which makes z a diffeomorphism; and 
with this smooth structure, the projection 3~~ + 3zg/G is a smooth fiber bundle with 
fiber G/ T and structure group W, isomorphic (in the smooth category) to the bundle given 

by P. 0 

Proof of Theorem 2. Z We can now put together all the pieces to obtain Theorem 2.1. 
Recall that the moduli space M” of flat connections over the compact oriented genus 

g(z 1) surface C is identified with the quotient space K;‘(Z)/SU(2). Then M” is the 

disjoint union M&2g_2j U M!& U Mi, where M$2g_2j corresponds to the quotient 

.71j(2g-_2)/su(2), the Stratum M$ corresponds to 32g/su(2), and Mz is a set of 22g 

points corresponding to {~kz]~~/sU(2). We have already proved that 33~s-2) is empty 
when g = 1, while for g > 2 it is a connected 3(2g - 2)dimensional manifold. We have 
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also proved, in Proposition 2.10, that Fg/SU(2) is a connected 2g-dimensional manifold, 
as given in (2.1Oc). 0 

3. The moduli spaces of flat S 0 (3) connections 

Let .E be a compact connected oriented two-dimensional manifold of genus g 2 1. Then 
there are two topologically distinct classes of principal S0(3)-bundles over E, one trivial 
and the other non-trivial. The moduli space of flat connections on the trivial bundle will be 
denoted MO(Z), and the moduli space of flat connections on the non-trivial bundle will be 
denoted M” (- Z) . The main results are: 

Theorem 3.1. The moduli space M’(Z) is the union of disjoint subsets 

(3.1) 

where 
(i) M&,,_,)(Z) is a connected 3(2g - 2)-dimensional manifold (empty if and only if 

g = I), 
(ii) M!&(Z) is a connected 2g-dimensional manifold, 

(iii) M!&(Z) is empty tfg = 1, while for g 2 2 it is a (2g - 2)-dimensional mantfold 

with 22s - 1 components, 
(iv) M:(Z) is afinite set. 

For the non-trivial bundle the corresponding result is: 

Theorem 3.2. The moduli space M”(-Z) is the union of disjoint subsets: 

M’(4) = M:c2g_2+-Z) u M;,_,(4) u M;W), (3.2) 

where 
(i) MO 3(2g_2)(-Z) is a connected 3(2g - 2)-dimensional manifold (empty if and only if 

g = I), 
(ii) M!&2(-Z) is a (2g - 2)-dimensional manifold with 22g - 1 components (empty if 

and only if g = l), 
(iii) ME(-Z) is a$nite set. 

In this section we shall often write G for SU(2), and ?? for SO(3). There is a standard 
covering map G + SO(3) : x H T, whose kernel is I&Z). If y E SO(3), we will denoted 
by y any element in SU(2) which covers u. 

The product commutator map 

Kg : SO(3)Q + G: (Z,,b ,,... , TTg, zg) H b,‘a,‘b,a, . . . bl’al’blal (3.3) 

will be useful. Since the kernel of the covering map G -+ SO(3) is (in) the center of G, 
Z?, is well-defined. 
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The moduli space MO(Z) of flat connections on the trivial bundle can be identified with 
quotient k;’ (Z)/SO (3), while the moduli space M”( --I) of flat connections on the non- 

trivial bundle can be identified with Z?,‘(-Z)/S0(3): 

MO(Z) 2: k,-‘(Z)/SO(3) and M”(-Z) 2: Z?,‘(-Z)/S0(3). (3.4) 

The strategy is again to understand the structure of MO(z) 2~ Z?;‘(z)/SO(3) by sepa- 

rating out the subsets of Z?;’ (z) corresponding to different isotropy groups of the SO (3) 
action. 

We are using the following decomposition: 

K,‘(z) = &-2)(Z) U-T*&(z) u &g-*(z) u To(z), 

where z = fl, and 

(3Sa) 

(i) F~(+Q(z) is the subset of k;‘(z) where the isotropy of the S0(3)-action is {I}, 

(ii) Tzg (z) is the subset where the isotropy group is a maximal torus in SO(3), 
(iii) .F+~(z) is the subset where the isotropy group consists of two elements (the identity 

and a 180” rotation), 
(iv) 70(z) is the remaining subset of Z?;’ (z); as we shall see in Proposition 3.4 below, 

the only other possible isotropy groups are: (a) SO(3), (b) the normalizer N(K) of a 
maximaltorusKofS0(3),(c)afour-elementgroup{Z,n~,n~,n~),where{n~,n~,n3} 
are 180” rotations around orthogonal axes. 

(The set To(z) should not be confused with .FQ_~(z) or with F3(2g_2)(~) for g = 1.) 
Then we decompose the moduli space as 

M’(z) = M:(2g_2)(~) u M:,(z) u M&(Z) u J@(Z). (3Sb) 

where MO 3C2g_2j (z) is the subset corresponding to 73(~_2) (z)/SO (3), and similarly for 

M&,(z), J+~&_~(z), and M:(z). 

3. I. The isotropy groups of the S 0 (3) -action 

We start with a few preliminary observations. Some of these may be verified by taking 
the covering map SU(2) -+ SO (3) to be given by means of the adjoint representation of 
SU (2) on its Lie algebra g; the vector space g can be identified with R3 using a basis which 
is orthonormal with respect to an Ad-invariant metric on g. - 

Observations 3.3. 
(i) A maximal torus in SO (3) corresponds to rotations around a fixed axis in R3. 

(ii) Elementsa, b E SO(3)satisfyk’ii6 = -&whereii,i E SU(2)covera, b E SO(3), 
if and only if a and b are 180” rotations around orthogonal axes (this may be verified 
by considering a diagonal form for it, for instance). Thus an element a E SO (3) 
commutes with b E SO(3) if and only if either a and b lie in the same maximal torus 
or they are 180” rotations around orthogonal axes. 
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(iii) Let a E SO(3), 7; a maximal torus in SO(3) and suppose aba-’ E T for some 
b E ‘;\{ I}. Considering covering elements ii, h E SU(2), with 6 taken diagonal by 
suitably conjugating T, it follows by matrix computation that a E N(T) (the normalizer 
of ?;) and &a-’ = b*t. C onversely, if a E N(T)\?; and b E 7 then abu-’ = b-l; 
this may also be verified by passing to SU(2). 

(iv) By (iii) and (ii), N (T)\T consists of all the 180” rotations about axes orthogonal to 
the axis for ?;. 

Proposition 3.4. L& HX c SO(3) be the isotropy group at a point x = (XI, . . . , x,) E 
SO(3)’ of the conjugation action of SO(3) on SO(3)‘, r > 1. 
(i) HX = SO(3) ifundonly ifx = (I,. . . ., Z), i.e. (xl,. . . ,x,} = {I}. 

(ii) HX = N(K) = K U n K, the normalizer of a maximal torus K in SO(3) (thus 
n E N(K)\K), if and only if {xl,. . . , x,} c {I, t} for some 180” rotation t (the 
180” rotation beZonging to F) and (xl, . . . , x,} # (I}. 

(iii) H, = {I, nl, n2, nj}, where nl, n2, n3 are 180” rotations around three orthogonal 
axes, if and only if {nl,n2} C {xl,. . . ,x,} C (Z,nl,n2, n3) (i.e. (XI,. . . ,x,) C 
(I, n1, n2, n3) but there is no 180’ rotation t such that {xl, . . . , x,) c (I, t)). 

(iv) HX = K, a maximal torus in SO(3) , if and only if a-1 , . . . , x,. E K and there is no 
180” rotation r such that {XI, . . . ,x,) c {I, t). 

(v) HI = (I, t}, for some 180” rotation n, if and only if: there is a maximal torus K 
(containing t) and 180” rotations nr , . . . , nj, with axes orthogonal to that for K, 
such that (xl, . . . , x,) C K U {nl, . . . , nj) ( i.e., {xl, . . . ,x,) c N(K)) butx does not 
satisfy the conditions of (i)-(iv) above. 

(vi) HX = {I) ifund only zfthe conditions of (i)-(v) do not hold, i.e. there is no maximal 
torus K such that (xl, . . . , x,) c N(K). 

Proof 
(i) Apparent. 

(ii) Suppose {Z) # {xl, . . . ,x,) c (I, t), for some 180” rotation t. Then HX = {y E 
SO(3) : yty-’ = t); by Observations 3.3 (ii) and (iv), this set equals N(K), the 
normalizer of the maximal torus K containing t. Conversely, suppose HX = N(K). 
Then each xi commutes with every element of K, and so each xi must E K. Moreover, 
choosing n E N(K)\K, we have xi = nxin-’ = xi:‘, and so x,? = I. Since HX # 
SO(3), x cannot be (I,. . . , I); thus x = (xl, . . . ,x,), with {I) # {xi,. . . , x,) c 

(1, t). 
(iv) is proved by arguments similar to those used for (ii). 
(iii) Suppose that there are 180” rotations nl, n2 and n3, around orthogonal axes, such that 

{nl,n21 C {xl,..., x,) c (I, nl, n2, ng). If y E H, then y commutes with n1 and n2 
and hence, by Observation 3.3(ii), must belong to {I, nl, n2, nx). It also follows from 
Observation 3.3(ii) that {I, nl, n2, ng) c H,; thus H, = {I, nl, n2, ng). Conversely, 
suppose H, = (I, nl , n2, ng), the ni ‘s being 180” rotations around orthogonal axes. 
Then, by Observation 3.3(ii), each xi must either be in {Z, nl, n2, n3) or be a 180” 
rotation with axis orthogonal to those of n 1, n2 and n3. The latter being impossible, 
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we conclude that {xl, . . . , x,} c {Z, nl, n2, ng}. Now if {xl, . . . ,x,} were a subset of 
{I, nt] then H, would, by (i) and (ii), not be equal to {I, nl, n2, ng}. Thus H, must 
contain at least two 180” rotations; taking these to be n1 and n2, we conclude that 

Inl,n2) C {XI,..., x,1 C II,nl, n2,n3J. 
(v) Suppose Hx = (I, t), where t is a 180” rotation. Since, by Observations 3.3, the set 

of elements which commute with t equals N(K), the normalizer of the maximal torus 
K containing t, it follows that (xl, . . . , x,) c N(K); since H, contains two elements, 
the conditions for (i)-(iv) cannot hold. 

Conversely, suppose that (xl, . . . , x,) c N(K), where N(K) is the normalizer of 
a maximal torus K, and the conditions for (i)-(iv) do not hold. Then (I, t) c Hx 
because t commutes with every element of N(K). Since (i)-(iii) do not apply, there 
is at least one Xj E N(K)\K. If there is only one Xj E N( K)\K then, since (ii) and 
(iv) do not apply, there is some i E (1, . . . , r) with xi E K and X; # I; in this case 
H, C Z(xi) O Z(xj) = (I, r), and so H, = (I, t). Now suppose there exist distinct 
Xi, xk E N(K) \ K . If Xj and Xk have orthogonal axes then, since (ii) and (iv) do not 
apply, there is some xi E K with xi2 # Z and so, as before, H, = (I, t). Finally, if 
Xj, Xk E N(K)\K have non-orthogonal axes then H, C Z(Xj) fl z(xk) = {Z, t), and 
so again Hx = (Z, z). 

(vi) Suppose {xl, . . . , x,) c N(K) for some maximal torus K. Then, by Observation 3.3(ii) 
and (iv), the 180” rotation t E K commutes with each xi and so Hx cannot be (I). 
Conversely, if H, # (I) then, choosing h E H,\(Z), and letting K be the maximal 
torus containing h, Observation 3.3 shows that N(K) is the set of all elements of SO(3) 
which commute with h, and so (XI, . . . , x,) c N(K). 0 

3.2. The structure ofF3(+2,(ztZ) 

Recall that F3(2g_2) (z) is the set of all points in Z$’ (z> where the isotropy of the SO (3)- 
action is (I). 

Proposition 3.5. Ifg > 2 then F3(2g-2)(Z) is non-empty and is a connected 3(2g - l)- 
dimensional submanifold of SO (3)2g. Zf g = 1 then F3~2~_2) (I) is empty. 

Proo$ Recall that F3(2g_2), the subset of Kg’ (I) c SlJ(2)2g where the conjugation action 

of SU(2) has isotropy group (fl), is the part of the level set K;‘(Z) which lies in the set 

of non-critical points of K,. If 7 E 73~2~_2)(Z) then, by Lemma 2.2, i:s is not critical at 
p and so, since the covering SW (2) + SO(3) is a local diffeomorphism, Kg is not critical 
at p, and therefore p E .F3(2g_2~. Thus 73~2~~2) (I) is a subset of F33(2g_2), the projection 
of F3~2~_2) on SO(3)2g. Ifg = 1 then .F3(2g_2) = 0 and hence so is _F3~2~_2)(Z). 

We proceed with the case g > 2. 
Pick a, b E SU(2) such that: (i) a, b do not commute, (ii) a2, b2 $ I&Z); for example: 

a=(: e”i~) and b=(crpnS: cz’), 
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where t = n/4. By Lemma 2.4(i), we can choose c, d E W(2) satisfying d-‘c-‘dc = 
(b-‘a-‘ba)-‘. Then, recalling that g 2 2, we have (a, b, C, 2, I, I, . . . , Z) E f;‘(Z) and 

Z(@nZ(b)nZ(QnZ(d) = {Z};forifx E W(2) satisfiesxax-’ = faandxbx-t = fb 
then, since u2 # fZ and b2 # fZ, it follows (by Observation 3.3(ii)) that xax-’ = a and 
xbx-’ = b, and thus, since b-‘a-‘bu # I, x must be fZ, and so X = Z(E SO(3)). Thus, 
(a, b, c, d, I, I, . . . , Z) E F3(213-2~(Z). So, if g p 2 then 73(+2)(Z) # 0. 

Let W be the set of points of SO(3)2” at which the isotropy group of the SO(3) con- 
jugation action is {I). It is readily seen that W is non-empty. Let us check that it is open. 
Consider a sequence ~1, ~2, . . . of points in WC converging to some p E SO(3)2g. From 
Proposition 3.4 we see that for any q E SO(3)2R, the isotropy group ZZ4 is either {I} or 
contains a 180” rotation. Thus each isotropy group H,,, contains a 180’ rotation xj . After 
passing to a subsequence if necessary, we take xj converging to a point x, and have 

xpx -1 = lim Xjf7jXIr' =jlAmmpj = p, 
J+m 

i.e. x E H,,. Since each xj is a 180” rotation, so is x. Thus the limit point p does not 
belong to W. Thus W is open. In fact, the complement of W, being the subset of SO(3)2g 
covered by Proposition 3.4(i)-(iv), consists of the union of a finite number of submanifolds 
of dimension 5 2g + 3 and so is W a dense open subset of SO(3)2g. (Actually, a general 
result in the theory of transformation groups implies that W is a dense open subset of 
SO(3)2g.) By Lemma 2.2, Z?, has no critical points in W; therefore, 73(~_2)(Z), being 
the level set (Z?, IW)-‘(Z), and being non-empty if g > 2, is, in that case, a 3(2g - I)- 
dimensional submanifold of S 0 (3)2g. 

As we have already noted, F3(2,+_2)(1) c 7’3(+2). Thus .F3(+2)(Z) is the subset of 
73~_2) consisting of the points where the S0(3)-conjugation-action is free. Let U,l,, be 
the subset of SO(3)2g consisting of all non-critical points of kg; then U& is open and 
F’3~2~-2) = (Zulu,!&-‘. Thus, for g 2 2, .F3~~-2) is a smooth 3(2g - 1)-dimensional 
submanifold of SO(3)2g. Since .F3(~_2) is connected, so is its continuous image 73~_2). 
The conjugation action of SO(3) on SO(3)2g restricts to a smooth action on the invariant - 
submanifold _F3~~_2). Since K, is non-critical at each point of 73(~_2), it follows from 
Lemma 2.2 that the isotropy group at every point in F3(~-2) is discrete. By Proposition 
3.4, we know that this discrete isotropy group is either {I}, or a two-element group or a 
four-element group. As will be proven later in Propositions 3.13 and 3.22, the subset of 
F3(+-2) consisting of points where the isotropy group is a two-element group or a four- 
element group is the union of a finite number of submanifolds each of dimension 5 2g + 2. 
Since these manifolds have codimension > 4g - 5, and since 73~2~_2) is connected, it 
follows that, for g > 2, .F3(2g_2)(Z) is connected. 0 

A general result in the theory of transformation groups says that the set of points of 
minimal isotropy is a dense open subset of the connected manifold on which the group acts, 
and the corresponding projection onto the quotient space is connected. In our setting, this 
also implies that F~(Q_~)(Z)/SO (3) is connected. 
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Proposition 3.6. Zf g 2 2 then F~Q~_~)(-Z) is non-empty and is a smooth connected 
manifold of dimension 3(2g - 1). Zf g = 1 then 33(+2)(-Z) is empty. 

Proo$ If g = 1, and (a, b) E Z?;’ (-Z), then, by Observation 3.3(ii), a and b are 180” 
rotations around orthogonal axes. In this case, the isotropy group at (a, b) is, according to 
Proposition 3.4(iii), a four-element group. Thus at no point on Z?[‘(-I) does SO(3) act 
freely, i.e. 73(~_2)(-Z) is empty if g = 1. 

Now suppose g > 2. Pick a, b E SU(2) such that: (i) a, b do not commute, (ii) a2 
and b* are not in {fl}. Pick (by Lemma 2.4(i)) c, d E SU(2) such that d&‘c-‘dc = 
-(b-‘a-‘ba)-‘. Then (a, b, C, 2, . . .) E Z?,‘(-I) and, as in the proof of Proposition 

3.5, the isotropy group at (??, b, C, d, I, I, . . . , Z) is {I). Thus (z, b, C, d, I, I, . . . , Z) E 

%(2g-2)(-o 

We work with g 2 2. By Lemmas 2.4(ii) and 2.2, -Z is a regular value of kg, and so 
Z?;‘(-I) is a smooth 3(2g - l)-dimensional submanifold of SO(3)*g. As in the proof 

of Proposition 3.5, 7’3(+2)(-Z) is an open subset of $;‘(-I) and so is a 3(2g - l)- 

dimensional submanifold of S 0 (3)*g. 
From Proposition 2.7, the manifold K;’ (-I) is connected, and hence so is the projection 

I?[‘(-Z). It will be proven in (3.6) and Proposition 3.22 that the subset of Z?,‘(-I) 
consisting of all points where the S0(3)-conjugation action is not free is the union of a 
finite number of submanifolds each of dimension 5 2g+ 1, i.e. of codimension 2 4g -4 2 4 
in IT‘;‘(-I). Thus the subset of Z?;‘(-I) where the S0(3)-action is free is connected, i.e. 

F3(2R_2) (-I) is connected. 0 

We turn to the quotients. 

Theorem 3.7. Suppose g > 2, and z = fZ. Then 33(+2)(z)/SO(3) is a connected 
smooth manifold of dimension 3(2g - 2), and the projection map 

F3c213-2j(~) + -T3(2g-2)(z)lSO(3) 

is a smooth principal S0(3)-bundle. 

ProoJ: Since SO(3) acts freely on F‘~(Q_~)(z), the result follows from the general fact 
quoted in Proposition 4.2, and the connectivity proved in Propositions 3.5 and 3.6. 0 

3.3. The structure of Fzg(&Z) 

Recall that 3zg(z) is the subset of Z?‘,‘(z) where the isotropy group of the SO(3)- 
action is a maximal torus in SO(3). According to Proposition 3.4 (iv) if a point p = 

(al,bl,..., ag, b,) E ?$(z) then , there are covering elements ;S, and &j all lying in one 
maximal torus in SU(2), and so kg(p) = I. Thus 

F&-Z) = 0. (3.6) 
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Proposition 3.8. Fzg (I) is a connected smooth submanifold of SO(3)2g of dimension 

2g + 2. 

Proof By definition, 7~~ (I) consists of those points in I?;’ (I) where the isotropy group 

is a maximal torus in SO (3). Let ‘?; be a maximal torus in SO (3), and t the 180” ro- 
tation belonging to 7;. For notational brevity, let us write ?? for SO(3). Consider the 

map 
-- 

(G/T) x T2g + SO(3)2g : (XT, tl, . . . , Q) H (xtlx-‘, . . . ,xt@‘). (3.7a) 

By Proposition 3.4(iv), the restriction 

-- 
@so(3) : (G/T) x (r2’\U, 42g> 

+ SO(3)Q : (XT, t1,. . .) t+) I--, (xt&, . . . , xtQx-‘) (3.7b) 

has image Fzg (I) (see the argument preceding (3.6)). It is readily verified (as in (2.6b)) by 
computation of the derivative d?c, that @SO(~) is an immersion. 

Let W be the Weyl group of T, i.e. W = N(T)/T 2: {I, n}, where n is a 180” rotation 
around an axis orthogonal to the axis for 7 (this follows from Observation 3.3). Examining 
@SO(~), we see that it induces a continuous one-to-one map 

-- 
&0(3) : [(G/T) x (T2s\{Z, x)~~>I/W + SO(3)2g, (3.7c) 

where the quotient [. . .I/ W is under the action of W on (S0(3)/T) x F2g specified 

by 

n?‘. (XT, tl, . . . , tpg) = (xn-‘T, tl’, . . . , tFg’). 

This action is free and restricts to a free action on (SO(3)/?;) x (?;2g\{Z, r}2g), and so 

the quotient [(S0(3)/T) x (F2g\{Z, t}2g)]/ W is a smooth manifold, the corresponding 
quotient map being a 2-fold covering. The image of Tso(s) is Fzg (I). 

Since the map in (3.7a) takes closed sets to closed sets, the map 5~0~3) takes closed 
sets to (relatively) closed subsets of Fzg(Z). Thus Tso(~) gives a homeomorphism onto 
Fzg(Z), taken as a subspace of SO(3)2g. Since @so(s) is an immersion, so is Tso(3) . Thus 

Fzg (Z) is a submanifold of SO (3)2g, (3.8a) 

and 3~0~3) gives a diffeomorphism onto Fzg(Z). In particular, 

dimFzg(Z) = 2g + 2. (3.8b) 

Theorem 3.9. The quotient space 7~~ (Z)/SO (3) is a connected smooth manifold of 
dimension 2g. The quotient map 7zg (I) + 72g(Z)/SO(3) speci$es a smooth fiber 
bundle isomorphic to a fiber bundle with fiber the sphere S2 associated to a princi- 
pal W-bundle over F+(Z)/SO(3), where W is the two-element group acting on S2 by 
x H -x. 
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Pro05 As we have seen above, the map 

(SO(3)/T) x T2” -+ SO(3)Q : (xT, t1, . . . ) t*g) 0 

H (xt,d, . . . ) xt*gx-‘) (3.9a) 

induces by restriction and quotient a diffeomorphism 

3 : [(2X2(3)/T) x (T2”\{Z, t}*g>]/ w + F&(Z), (3.9b) 

where the quotient [. . .I/ W is under the right action of W specified by (n E W, n # I) 

nT . (XT, tl, . . . , t& = (xn-‘T, tl’, . . . , t26,‘). (3.9c) 

ThenaturalleftactionofGonSU(3)/TgivesaleftactionofSO(3)on(SO(3)/?;)~;1;~~ 
(which commutes with the right action of W), and a corresponding action on the quotient 

space[(SO(3)/T) x @*‘\{I, t}*~)]/W.1tisreadi1yverifiedthat~isS0(3)-equivariant. 
We have then the commuting diagram 

[@0(3)/T) x (F2g\{z, @)I/ w z F*gU) 

JP 4 P’ (3.9d) 

[T2R\{Z, r)2”]/ w f Fzg(Z)/sO(3) 

where p is obtained from the projection of (S 0 (3)/F) x ??2g on the second factor, p’ is the 

quotient map, and z is the induced map. The induced map z is one-to-one, and is therefore 
a homeomorphism. 

We observe that p is a smooth fiber bundle projection: it is the SO(3)/?;-bundle associ- 

ated to the principal W-bundle T*‘\{Z, t}*s -_, (F2g\(*Z}2s)/ W by the action of W on 
SO(3)/T (specified by n . XT H xn -‘T). As already noted, @ is a diffeomorphism and 

z is a homeomorphism. Thus the projection &s (I) 2 Fzg (Z)/sO (3) is a submersion if - 
and only if 7~~ (Z)/SO (3) is equipped with the smooth structure which makes 3 a diffeo- 
morphism; and with this smooth s+Jucture, the projection FQ(Z) + Fzg(Z)/sO(3) is a 
smooth fiber bundle with fiber SO(3)/T 21 S* and structure group W, isomorphic (in the 
smooth category) to the bundle given by p. 0 

3.4. The set ofpoints in SO(3) ‘g where the isotropy has two elements 

We have 

where &s-2(2) is the set of all points in Z?;‘(z) where the isotropy group of the SO(3)- 
conjugation action is a two-element group. 
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Suppose g = 1. Then, by Observation 3.3(ii), if (a, b) E Z?;t(JzZ) then either a and b 
lie in the same maximal torus or they are 180” rotations around orthogonal axes. In either 
case, the isotropy group is not a two-element group (this by Proposition 3.4(i)-(iv)). Thus 
-TQ_*(*Z) is empty if g = 1. 

We shall work now with g >_ 2. 
Our immediate objective is to understand the subset of SO(3)2g consisting of points 

where the isotropy group has two elements. 

Proposition 3.10. Let 

F dzf 
( 

the subset of S0(3)2gconsisting of all points 
where the isotropy group has two elements. 

(3.10) 

Then 
(a) F is a (2g + 2)-dimensional submanifold of SO(3)2s. 
(b) The quotient map F -+ FISO(3) has the structure of a jiber bundle, with fiber 

SO(3)/{Z, t), where t is a 180” rotation, and structure group N(T)/{Z, t}, where 
N (;i;> is the normalizer of the maximal torus 7; containing t. 

We will break up the proof of this result into a number of lemmas. 
We work with a fixed maximal torus T in SO(3). Let t be the 180” rotation belonging 

to T, and fix any n E N (F)\T, i.e. n is a 180” rotation with axis perpendicular to that of T. 
The conjugation action SO(3) x SO(3)2g + S 0 (3)2g induces, by restriction, a smooth 

map 

p : SO(3) x N(7;)2g + SO(3)2g : (x, p) H xpx-‘. (3.1 la) 

We are interested in this map because Proposition 3.4(v) guarantees that the image of 9 
contains the subset of SO(3)2g where the isotropy group has two elements. 

The map G is invariant under the following action of N(T) on SO(3) x N(T)2g: 

Y. 6, p> t-+ by-‘, YPY-~), fory E N(T). (3.1 lb) 

Let B denote the subset of N (T)2g consisting of all points where the isotropy group is not 
a two-element group. Proposition 3.4 yields the following explicit description of the set B: 

B = T2g U B’, (3.1 lc) 

where 

: if xj E ‘?; then XJ E {I, t}; if Xj E N(T)\T then 
xj E {yn, ytn} for some y E T independent of j I 

(3.1 Id) 

The set B’ is clearly contained in the union of { I, t}2g with a finite number of diffeomorphic 
images of T. So B is a closed subset of N(T) 2g Thus, N(T)2s\B is a 2gdimensional . 
manifold, with 22s - 1 components. 

Lemma 3.11. Twopoints in SO(3) x [N(T)2s\B] are on the same N(T) -orbit zfand only 
zf they have the same image under P. 
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Proo$ Since @ is invariant under the action of N(T), the ‘only if’ part is clear. 
For the ‘if’ part, suppose @(x, p) = @(y, q), where x, y E N(F)*g\B; i.e. 

xpx-’ = yqy-1. 

Then 

wpw -1 = 43 

where w = y-lx. It will suffice to show that w is in N(F). 
If some component Pj of p belongs to T\{ 1, t}, then WPj w-’ = qj E N(F) but since 

(WPj w-l)* # I (otherwise Pj would be t), WPj W-’ must be in T and so, by Observation 
3.3(iii), w E N(T) (and therefore, qj = p:’ E T). The same argument works if qj E 

F\]l, r]. 
SO suppose now that if either Pj or qj is in r then Pi, qj E {I, t} (i.e. either Pj, qj E 

N(T)\T or Pj, qj E {I, t)). Now consider a component Pjl E N(T)\T. By conjugating p 
by an appropriate element of T (and multiplying x, or w, on the right by that element), we 
will assume that Pjl = n. Consider another component pj2 E N(T)\T, pj2 # pjl . Since 

wPjl w -’ = qjl E N(‘?;)\T, we have wnw-’ = tn, t E T. Next, WPj,w-’ = qj2 implies 
wsnw-’ = rn, for some s E F\(Z) and r E T. So rn = wsnw-I = wsw -‘tn, and so 
wsw-t = rt-’ E r. Hence w E N(T). 0 

The action of N(r) on SO (3) x N (T)*g is free and so the quotient is a smooth manifold 
and iP induces a smooth map 

[SO(3) x N(T)2g]/N(T) + SO(3)2g. (3.12a) 

Let Ir/ denote the restriction of the map (3.12a) to the subset SO(3) x [N@)*g\B]/N(T). 
According to Lemma 3.11, the map q is one-to-one. 

Lemma 3.12. The map 

37 : [SO(3) x (N(?;)2g\B)]/N(?;) -+ SO(3)2g 

is an immersion. 

Proofi Let (x, p) E SO(3) x N(r)*8 , and X be a vector in the Lie algebra of SO (3), and 

P E L(T) *g. Thus (xX, pP) is a typ’ ma1 element of T(,,,)[SO(3) x N(T)*g]. Recall that 
P(x, p) = xpx-’ . Writing P = (Pj)j, we have 

dp(xX, pP) = xPx_l(Ad(x)[Pj - (1 -Ad(PJ~‘))X])j. (3.12b) 

Suppose (xX, pP) is in the kernel of dw. Write X = XII + Xl, where Xl1 E L(T) and 
Xl E L(r)l (this is the orthogonal complement relative to any Ad-invariant metric on the 
Lie algebra of SO(3)). Then, from (3.12b), we have, for each j, 

(1 - AdpJ:‘)XI = 0, (*) 

(1 - AdPJy’)XIi = Pj. (**) 
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From (*) it follows that exp(rXJ commutes with Pj, for every real E. Since p 4 B, the 
isotropy group at p has only two elements and therefore XI = 0. Then, using (**), we 
have 

(XX, Pm = $ ICC0 (x exp(cX), exp(-cX)p exp(EX)) 

=- d”, 1 =. exp(-cX) . (x9 PI 
E 

Thus we have proved that if (xX, pP) is in the kernel of di& then (xX, pP) is tangent to 
the N(T)-orbit through (x, p). 0 

Combining the above results, we see that the image of y is a submanifold of S 0(3)*s and 
q is a diffeomorphism onto its image. This image is the union of all S 0 (3) orbits through 
the points of N(??)*R where the isotropy group has two elements. Thus this image consists 
only of points where the isotropy group has two elements. Moreover, by Proposition 3.4(v), 
any point in SO(3)*g where the isotropy group has two elements is on the S0(3)-orbit 
through some point in N(?;)*g. Thus 

F([SO(3) x (N(T)2g\B)]/N(T)) = F. 

As noted after (3.1 Id), the space (N(y)*g\B) . 1s a smooth 2g-dimensional submanifold of 
SO(3)*g, with 2*g - 1 components. The quotient [SO(3) x (N(7’)*g\B)]/N(T), being 
the quotient under a free action, is a smooth (3 + 2g - 1)-dimensional manifold, and the 
corresponding quotient map is a principal N @)-bundle projection map. Thus F is a (2g+2)- 
dimensional submanifold of SO(3)*8. The N(?;)-conjugation carries each component of 
N(T)2g into itself. Thus F also has 2*g - 1 components. 

We have proved Proposition 3.1 O(a) and more: 

Proposition 3.13. The set F of all points in SO(3)*g where the isotropy group has two 
elements is a smooth (2g + 2)-dimensional submanifold of SO(3)*g. Moreovei; 

F : [SO(3) x (N(~)2g\B)]/N(~) + F is a diffeomorphism. (3.13) 

The group S 0 (3) acts on S 0 (3) x (N (T)*g \ B) by left-multiplication on the first factor, 
and this action commutes with the action of N(T). Thus we have an induced natural action 
of SO(3) on [SO(3) x (N(F)*g\B)]/N(r). The corresponding quotient is 

[SO(3) x (N(T)2g\B)]/N(T> 1; (N(7;)2R\B)/N(7;), (3.14a) 

which is essentially the projection on the ‘second factor’. 
Clearly, F is equivariant under the action of SO (3). We have then the commutative 

diagram 

[SO(3) x (N@)*g\B)]/N(ir) % Im(@= F 

&P J P’ 

[N(T)2g\WN(T) 5 Im%/S0(3) = F/S0(3) 

(3.14b) 
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in which the quotient [N (T)2s\ B]/ N (T) is with respect to the conjugation action, and the 
bottom arrow is induced by the inclusion N(T)2g\B + F c SO(3)2g. 

Lemma 3.14. The bottom arrow z in (3.14b) is a homeomorphism. 

ProojI Since $ is a homeomorphism and p and p’ are quotient maps, it will suffice to prove 

that z is one-to-one. Injectivity of y is equivalent to v mapping distinct SO(3)-orbits into 
distinct orbits. To this end, let (x, s), (y, u) E SO(3) x N(T)2g be such that there is a 
w E SO(3) with woly(x, s)w -’ = W(y, u). Then ly(wx, s) = U(y, u) and so, by Lemma 
3.11, (wx, s) and (y, u) lie on the same N(T)-orbit in SO(3) x N(T)2R. Therefore, the 
points [(x, s)] and [(y, u)] in [SO(3) x N(T)2g]/N(T) lie on the same SO(3) orbit, with 

w . re, s)l = [(Y? u>l. 0 

To understand the diagram (3.14b) at the smooth level we will show that the vertical 
arrow p corresponds to a smooth fiber bundle with fiber SO(3)/{1, t), associated to a 
certain smooth principal bundle over [N (T)2g\ B]/ N (7). The principal bundle will have the 
structure group N (T)/{Z, t}. Having this, it clearly follows that the differentiable structure - 
on ImY/S0(3) which makes F a diffeomorphism is the one which makes the quotient 
p’ : Im q + ImF/S0(3) a submersion; consequently, with this differentiable structure, 
p’ is a fiber-bundle projection. 

The conjugation action of N(T) on N (r)2g\ B has isotropy group {I, t) everywhere, 

and so the quotient space [N(T)2g\B]/N(T) is a smooth manifold and the projection 

[N(T)2R\B] -_) [N(F)2”\B]/N(?f) is a principal N(F)/{Z, t}-bundle. 
Let 

N’(T) = N(T)/{Z, t}. (3.15a) 

Note that (I, t} is the center of N(T). 

Note also that [N(F)2g\B]/N(T) is naturally diffeomorphic with [N(r)2g\ B]/N’(T), 

where the action of N’(F) on [N(r)2g\ B] is simply the one induced by that of N(r). 
The smooth action of N (7;) on SO (3) given by 

(h, x) H xh-’ (3.15b) 

induces a smooth action of N’(T) on SO(3)/{Z, t}. Then we have the associated smooth 
fiber bundle 

SO(3) 
II, t) 

x (N(T)2g\B) 
> 

/N’(T) 

-1 
(N(T>2R\B)lN’(?‘), 
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where the quotient on top is with respect to the action of N’(F) on SO(3)/{1, t} x 
(ZV(!?)2g\B) given by 

h . (x{Z, t), p) = (xh_‘{Z, r), hph-1). (3.1%) 

Note that this action is free and so the quotient is a smooth manifold. 
The identity map 

SO(3) x (N(T)2g\B) += SO(3) x (N(?;)Q\B) 

induces a surjection 

SO(3) x (N(F)2s\Z3) 
SO(3) 

+ m x (MT>2g\Z% 

which carries distinct N(T)-orbits onto distinct N’(F)-orbits. Thus there is a well-defined 
bijection 

[SO(3) x (ZV(T>2g\B)]/N(7’> -+ 
[ 

z x (N(T)Q\B) 1 /N’(T). 

The two quotients here are with respect to free actions and so are smooth manifolds and the 
bijection above is a diffeomorphism. 

We have the commutative diagram 

[SO(3) x (IV(‘7’>2g\B>]/N(T) + 
E 

E x (N(F)Q\B) 
I 

/N’(T) 

$P 4 Pl 
(3.15d) 

w(n2~\w~(n --f (N(Tp\B)/N’(T) 

where the top and bottom arrows are diffeomorphisms and the vertical arrows are quotient 
maps. The important point here is that the vertical arrow on the right is a jiber bundle; 
it is the fiber bundle with fiber SO(3)/{1, t) associated to the principal N’(T)-bundle 
[N(T)2g\B] -+ [ZV(T)‘g\B]/ZV(T), where the structure group N’(T) acts on the fiber 
SO(3)/{Z, t} in the manner induced by (3.15b). 

Stringing together the two commutative diagrams (3.14b) and (3.15d), we obtain the 
commuting diagram: 

[SO(3) x (N(7’>2g\Z?)]/N’(T> + F 
-1 Pl 4 P’ 

[N(T)2g\B]/N’(;i;) --f FISO(3) 
(3.15e) 

Here pl is a fiber bundle projection, p’ is a quotient map, the top horizontal arrow is a 
diffeomorphism and the bottom horizontal arrow is a homeomorphism. Thus the differen- 
tiable structure on F/S0(3) which makes the bottom arrow in (3.15e) (or, equivalently, in 
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(3.14b)) a diffeomorphism makes p’ a submersion. We equip FISO(3) with this differen- 
tiable structure. Thus we have proved Proposition 3.10(b); in fact, we have: 

Proposition 3.15. Let F be the subset of SO (3)*R consisting ofallpoints where the isotropy 
group of the S0(3)-action has two elements. Then the diagram 

[SO(3) x (N(T)*g\B)]/N(-T) % F 

4P & P’ (3.150 

wm*g\fwm z FISO(3) 

is an isomorphism, in the smooth category, ofjiber bundles with fiber SO(3)/{1, t) and 

structure group N’(T) dAf N(T)/{I, t}, where t is the 180” rotation belonging to the 
maximal torus T. The bottom arrow is induced by the inclusion N(T)*g\B c F. 

Furthermore, the$ber bundles given by p and p’ are each isomorphic, in the smooth 
category, to the fiber bundle with fiber SO (3)/{1, t} associated to the principal N’(F)- 
bundle given by the quotient [N (T)*g \ B] + [N(T)*g\B]/N(r), where the action of the 
structure group N’(F) on the$ber SO(3)/{1, t} is the one induced by h ’ x = xhh’ for 
h E N(T), x E SO(3). 

It will be useful to coordinatize N(‘?;)*g as follows. Let J be a set of 2g elements, and 
-*g view T as ?. For S c J, we use the diffeomorphism 

& : T2g -+ N(7;)2g : (tj)jeJ ++ (&(tj))jEJ* (3.16a) 

where 

(3.16b) 

The sets C#JS (F2g) are the different components of N (T2g). 

We will use 4s to transfer to ?;‘” : (a) th e conjugation action of N(T) on N (T)*g , and (b) 

the set B. Recall that B is the set of points in F2g where the SO (3)-action has a two-element 
isotropy group. 

Proposition 3.16. 
(a) Consider the action of N (T) on T -2g given by Cfor s E F) 

S . (tj)je./ = (t;)jcJ, where tj = tj if j ES, 
S*tj ifj $! S, 

and 

sn ' (tj>jEJ = (f)je/t where tj” = 
ty l ifj E S, 
s*t,r’ if j $ S. 

(3.16~) 

(3.16d) 

Then 4s : T2g + N(T)*g is equivariant. 
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(b) If S = J then c$s(??~~) c B; if S # J then 4;’ (B) is the orbit of the subset {I, t12R 
under the action of N(T): 

Bs dAf @S’(B) = N(T). {Z, t}2g. 

(c) If S1, S2 are distinct subsets of J then 

proot 
(a) Readily verified by inspection. 

(b) Recall from (3.1 lc) that B = T2’ U B’, where B’ is specified in (3.1 Id). If S = J, then 

4s is the inclusion map F2g + N(T)*g, and so 4~(?;~~) = F2” c B. 
NOW suppose S # J. Consider a point t = (tj)jeJ E Bs; let @s(t) = x = (Xj)jc/. 
Then, since S # J, there is some k E J\S, and so Xk = tkn E N(T)\?;, and so, in 

particular, x E B\F2g = B’. Therefore, by the definition of B’ in (3.11d), Xj E {Z, t} 
for every j E S and there is some y E T such that Xk E {yn, ytn) for every k E J\S. 
Thus, tj E {I, t} for every j E S and there is some y E 7; such that tk E {y, yt} for 
every k E J\S. Then t belongs to the N(T)-orbit through a point t’ E {Z, ~}~g. Thus 
Bs c N(7;). {I, t}2g. 

Conversely, again with S # J, the isotropy group of the N(T)-action (as given in 

(3.16~) and (3.16d)) at any point of {I, t}2” c T2g ’ is a four-element group (s or sn, 
where s E T, belongs to the isotropy group if and only if s2 = I), and so no point on 
N(r) . (I, t}2g has isotropy group with exactly two elements, and so N(T) . {I, t}2g c 
B.S. 

(c) Suppose tisz($)jEJ = ~4s,(tj)j,~X-’ for some (tj)jeJ, ($)jeJ E T2’, and x E 

SO(3). We shall show that (tj)jc_/ E Bs, and (t;)je_/ E Bs,. This will imply the 
desired result. In (b) we have seen that (uj) E Bs means that Uj E {I, t} for all j E S 
and there is some y E T such that yUk E (I, t) for all k E J\S. 

First we note that x $ N(T). For if x were an element of N(T), then, picking j E Sl \S2 
(if this set is empty we can interchange Sr with S2, and t with t’), we would have 4s2, (t/) = 

x+S1 j (tjb -’ = $’ E F, which is impossible since 4szj (tj) E N(F)\?? as j $ S2. 

Let j, E Sr n S2; then tj* = xtj,x-‘. Since x $ N(T), it follows from Observation 
3.3(iii), that tj and $ must be equal to I. 

Consider j E St\&. Then +slj (tj) = tj E T while &, ($) = tjn is a 180” rotation. So 

tj, being conjugate to tjn, is the 180” rotation t E 7;. Similarly, tj = t for all j E &\Sl. 

Now consider j, k E J\(Sl U S2). Writing out the conditions x$slj (tj)x-’ = q5szj (tj) 

and x~s,, (&)X-l = @s2k (ti) we have x(tjn)x-’ = $n and X(tkn)X-’ = tin. Then 

X(tjtF’)X 
-1 / 1-l 

= tjtk . 
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Since x $! N(T), Observation 3.3(iii) implies that tj = tk. Thus there is a y E T such that 
tj = y for all j E J\(Si US*). Then tj = c$s2, (ti)n-’ = x4sl j (tj)T’n-’ = xynx - -1,-l _ 

y’, independent of the choice of j in J\(St U S2). 
Consider j E S2\S1 and k E J\(Si U S2). Then 

tj = @S*j (t:) = X$s,, (tj)X-’ = XtjnX-’ 

and 

t;tt = (b,& (t;) = XC& (tk)X-’ = XtknX-’ . 

So, using (tLn)-’ = t;n, 

-1 -1 tit;, = Xtjtk X . 

Now tj = t since j E &\St, and tk = y’, independent of k E .T\(Sl U S2); so 

-1 
tjtk = X -‘(ty’n)x. 

Thus tj tL1 is conjugate to a 180” rotation and therefore must be t. Since rk = y, independent 
of k E J\(Sl U S2), we have tj = yt for every j E &\St. 

Thus we have proved the following for (tj)je_/ : (i) if j E St then tj is either I (if 
j E Si f~ S2) or t (if j E Si\&); (ii) there is a y E T such that if j E J\St then either 
tj = y (if j E J\(Sl U &)) or tj = yt (if j E &\Sl). All of this simply says that 
(tj)jc_/ E Bs,. Similarly, (ti)jcJ E BsZ. 0 

3.5. The structure of 72g_2(%Z) 

Recall (3.5a) that Fzg-2 (z) = Z?,’ (2) n F, where F is the subset of SO(3)2g consisting 
of all points where the isotropy group of the S0(3)-action is a two-element group. 

It will be convenient to take N(T)2g as N(r)J, where J is the 2g-element set 

J = (1,2,5,6, . . . ,4g - 3,4g - 2). 

With this notation, 

(3.17a) 

where pi is any element of SU(2) which covers pi E SO(3). (For p E N(T), each 
commutator appearing in the product above is actually an element of T .) 

If x, y E N(T), then straightforward computation shows 

I if x, y E T, 

y-lx-‘ji = x2 ifx ETandy E N(T), __2 
Y ifxEN(T)andyET, 
(jZ.-‘)2 if x, y E N(T). 

(3.17b) 
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Recall from (3.16a) and (3.16b) the charts 4s parametrizing the components of N(T)2g. 

We will use 4,s to transfer to -f;2g the map kg. 

Proposition 3.17. 

(kg O dS)(tj)jEJ = n fyq;‘“:; = l--p?, 

j=1,5....,4g-3 jeJ 

where 4 is any element of T covering tj E T, and, for j = 1,5, 

[ (0, 0) if j, j + 1 E S, 

(mjt mj-t’) = I (27 0) ifjESandj+l$S, 
(0, -2) if j $ S and j + 1 E S, 
(-2,2) ifj+!Sandj+l$S. 

ProoJ: Follows by combining (3.17a) and (3.17b). 

Recall that, for a = fl, 

&2(z) = I?;‘(z) n F (3.18) 

(3.17c) 

(3.17d) 

0 

Proposition 3.18. Suppose g 2 2. Then F~_2(&1) are (2g + 1)-dimensional submani- 
folds of S0(3)2K 

The proof of this is contained in that of the next result, where we identify the components 
of &@(*z): 

Proposition 3.19. Suppose g > 2. Then 7+2(Z) and &-2(-Z) each have 22g - 1 
connected components. 

Prooj Recall that FQ_~(z) = Z?;’ (z) fl F, where F is the set of points in SO(3)2g where 
the isotropy group of the SO(3) action has two elements. 

By Proposition 3.13, F is the diffeomorphic image under @ of the quotient (SO(3) x 
(N(T)2g\B)>/N(~), the latter being a space with 22g - 1 components. Moreover, the 
space F2s_2(z) = k;‘(z) n F is diffeomorphic to the union of the 22g - 1 connected 

sets (SO(3) x ((Kg 0 @s-’ (z)\&))IN(% with S running over all proper subsets of the 

2g-element indexing set J = { 1,2,5,6, . . . ,4g - 3,4g - 2}. Here C#JS : T2g + N(T)2R 
is the map given in (3.16a). 

As we have noted, 

(2, 0 &)(t) = n 5”‘, 
jEJ 

(3.19a) 

where t = (tj)je J E T2g is covered by ($)jE J E T2g, and mj E (0, *2} are as specified in 
(3.17d). 
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We work with a proper subset S C J. Fix jt E J such that mj, # 0 (by (3.17d) such 
jt exists). It is readily verified from (3.19a) that the restriction of the coordinate projection 
TJ ~ rJ\ljll to (gR o @s)-‘(z) is a bijection. Thus (K, o @s)-‘(z) is diffeomorphic to 

T2”-‘. 
Since dim Bs = 1 and dim(Kg o&-l (&I) = 2g - 1, and g 2 2, it follows that each set 

(Z?&o $s)-r (z)\Bs is connected and has dimension 2g - 1. The corresponding component 

of F2g-2(z) is 

Tzg_2(z)s = union of all SO(3)-orbits through ~$,s(~~~\Bs) n Kg’(z). (3.19b) 

This is diffeomorphic to (SO(3) x ((Kg o&-‘(z)\Bs))/N(T), and therefore has dimen- 
sion2g+l. 0 

3.6. The quotient72g-2(fZ) + F2g-2(fZ)/S0(3) 

We have seen (in Proposition 3.15) that the quotient map F -+ FISO(3) is a fiber 
bundle projection, where F is the subset of SO(3)*R consisting of all points where the 
isotropy group has two elements. For z E {Z, -I}, the set FQ_~(z) is, by Proposition 3.19, 
a submanifold of F, invariant under the action of SO (3). Thus the bundle projection F -+ 
F/SO(3)restrictstoafiberbundleF2,_2(~) -+ ~2g-2(z)/S0(3),withfiberS0(3)/{Z, t} 
(where t is a 180” rotation) and structure group N @)/(I, t}, where ? is a maximal torus 
(containing t) in SO(3) and T is the 180” rotation in 7;. We set this out in detail in the 
following result. 

Theorem 3.20. Let z be Z or -I. The quotient space F2g-2(Z)/so(3) is the union of 
22” - 1 disjoint components. For anyproper subset S c J, let 7~-2(z)s be as in (3.19b). 
Then the sets 7~_2(z)s/SO(3) are the 22R - 1 disjoint components of~2g-2(z)/SO(3). 
Moreover, for each proper subset S of J, there is a commutative diagram 

SO(3) 

{Z> t) 
x {&, 0 @s)-‘(z)\ZW /N’(T) 3 1 32g-*(z)s 

$9 

[(kg 0 4s>-'(z)\fMIN'(~) 

4 4’ 
$ &g-2(Z)~/so(3) 2: M;g_2(z)s 

(3.20a) 

in which the vertical arrows are quotient maps, and the horizontal arrows are diffeomor- 
phisms. The vertical arrow given by q is thefiber bundle withJiber SO (3)/{Z, t } associated 
to the principal N’(T)-bundle given by the quotient map 

UK, 0 h-‘(z)\~sl + [6, 0 h-‘(z)\&llN’(% (3.20b) 

with N’(T) acting on SO(3)/{1, t} via conjugation, as in (3.15b). Thus the vertical arrow 
q’ also specifies a$ber bundle withJiber SO(3)/(Z, t) and structure group N’(T), and the 
diagram (3.20a) is an isomorphism of smooth fiber bundles in this category 
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The following gives an explicit description of the spaces 7~_2(z),s/SO(3). 

239 

Proposition 3.21. Let S be a proper subset of J. Let W be the two-element group (I, w} 
-2g-2 

acting on T by wx =x-l. There is a smooth one-to-one map 

js : T2g-2 += SO(3)2g 

such that 
-2g-2 

(i) det djs is constant (# 0) everywhere on T , 

(ii> js(T -2g-2\{z, tJ2g> c 72g-2(z)s, 

(iii) js induces a diffeomorphism Js : (T2g-2 \(I, r129/ W --+ %g-2(z)s/SO(3). 

Proo$ Since S is a proper subset of J, the specification of the mj given in (3.17d) allows 
us to choose distinct jr, j2 E J such that mj, # 0 and j2 4 S. Let 

jk : T -J\G..iz) ~ 772~ :XHX’ 

be specified by 

1 

xj if j E Z\Ijl, j21, 

XJ = ;jCJ,i,,j?i xl?rnjl 

ifj = j2, 

ifj=jrandz=Z, 1 

-mjlmjl 
' nj~J\(.ilkl x.i if j = jr andz = -I, 

where t is the 180” rotation belonging to T. Note that mj /mj, E (0, f 1). Then we define 

The definition of jb shows that djk(X) = X’ = (xJ)j, J, where 

( 

xj if j E J\Ijl, j21, 
+ 0 if j = j2, 

-~j~J\(j,) ZXj ifj = A. 

It follows from this (or from the corresponding expression for d jh*d jk) that 

(the specification of the mj given in (3.17d) shows that det djh = ,/2g - #S - Jm,j2 l/2. 
Since 4,s is an isometry, det d js = det d j&. 

By (3.19a), we have (kg o @s)(x) = njC J .?,n’, where ij E T covers xj E T. Using the 

definition of the xj, and the fact that ?2 = -I, we see then that 

ks 0 js(n) = (K, 0 @s)(j$)) = (KR 0 @s)(x’) = z. 
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Since j2 4 S and the j2th component of any element in the image of jk is, by definition, I, 

it follows, that for any x E T -2g-2, the image j;(x) lies in Bs if and only if x E {I, t)2g. 

Thus j,s maps F2g29-2\(Z, t}2R into FQ_~(z)s. 

If two points in j, (?;2g-2 \(I, ~}~g) are on the same S0(3)-orbit then the corresponding 

points in j; (T -2g-2\(z, t}Q> are on the same N(T)-orbit (this follows from Lemma 3.11). 
Examination of Proposition 3.16(a) then shows that (s2 = 1 in (3.16~)) the points in 

-2g-2\{z, t}Q T are on the same W-orbit. Thus j, quotients to a one-to-one map 

js : (p-2 \(I, t12g>/W + ~2g-2(z)~ISW). 

If y E F2g-2(z)s then by appropriate conjugation we can assume that y E c5~(!?~~) and 
Yjz = n. Then the point x’ = 4;’ (y) has Xj2 = I. Since kg o &(x’) = z, the component 
x5, is determined by the other components, and it follows that X’ lies in the image of js. 

Thus 5 is also smjective. 

Since js is an immersion, so is z. Moreover, js is a homeomorphism of (?;2g-2\( I, t}2g) 

/ W onto its image (the fact that j,((T2g-2 \(I, t}2g>/ W is a closed map can be verified 
-2g-2 

using the observation we made above that a point x E T m the image of j, lies in 

F2g_2(z)s if and only if x E ?;2g-2 \(I, t}2g). Combining all these, we see that js is a 

diffeomorphism of (T2g-2 \(I, t}2g)/ W onto its image. 0 

3.7. The sets To(z) and70(z)/S0(3) 

Recall (from (3Sa)) that To(z) is the subset of Z?;‘(z) where the isotropy group is 

either SO(3) or N(T), the normalizer of a maximal torus ?; in SO(3), or is of the form 
(Z, tt , Q, t3} for some 180” rotations tt , ~2, t3 around orthogonal axes. 

Let 

the subset ofS0(3)2gconsisting of all points where the 
F. = isotropy group is eitherSO (3) 

or the normalizer of a maximal torus inS 0 (3)) 
or a four-element group. 

(3.21a) 

These cases are covered by Proposition 3.4(i)-(iii), from where we see that a point 

(Xl,... ,x2g) E sow *g belongs to Fe if and only if (xl, . . . , x2g) c (I, nt, n2, n3}, 

where nt, n2, n3 are 180” rotations around three orthogonal axes. Thus, fixing 180” rota- 
tions tt , ~2, q around three orthogonal axes, we have 

F. = u xF;x-‘, where Fh = (I, q, ~2, ~3}~~. (3.21b) 
XESO(3) 

Let S3 be the group of permutations on (I, tt , ~2, q} which fix I; thus Ss has a natural 
action on F& Two points in F,$ lie in the same &-orbit if and only if they lie in the same 
S0(3)-orbit in Fo (every permutation of (tt , ~2, q} can be realized as the conjugation by 
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t/2 some element of SO(3), since the permutation tt t, q is realized by conjugation by rs 
- a 90” rotation around the axis for ~3). Thus we have a bijection 

FoISO(3) N F;lS3 (3.21~) 

induced by the inclusion FA c Fo. 

Proposition 3.22. The sets Fo and Fh split into the following disjoint sets according to 
isotropy type: 

Fo=FooUFolUFo2 and Fh=F&,UF&UFh2, (3.21d) 

where FLj = Foj fl {Z, tl, ~2, Q}~R, and 
(i) Foe = F& is the singleton consisting of thepoint (I, I, . . . , Z), and the isotropy groups 

are the full groups. 
(ii) Fol is the set of points where the isotropy group is the normalizer of a maximal torus 

in SO(3), and FA, = (JTzl{Z, tj}2”\((Z, I,. . . , I)} is the set of points in FA where 
the isotropy group is a two-element subgroup of S3. Each SO(3) orbit through a point 
of the set Fol is equivariantly diffeomorphic to the connected 2-dimensional space 

S0(3)/N(K), where N(K) is the normalizer of the maximal torus K in SO(3). The 
number of components of Fol is 

#Fol/SO(3) = #F;,/S3 = 22g - 1. (3.21e) 

(iii) F02 is the set of points where the isotropy group is a four-element group, and FA2 = 

Fh\ Uj=l {Z, rj12g is the subset of Fi where the isotropy group is trivial. Each orbit 
through Fo2 is equivariantly diffeomorphic to the connected 3-manifold S 0 (3) /{I, tl , 

~2, ~3). The number of connected components of Fo2 is 

#F02/S0(3) = #F&/S3 = #F& = $(42g - 3. 22’ + 2). 

The total number of components of FO is 

#Fe/SO(3) = #F&S3 = #;(42” + 3. 22g + 2). 

(3.21f) 

(3.21g) 

Proof The decomposition of Fo according to isotropy is provided by Proposition 3.4(i)- 
(iii), which also shows that Foj consists of the points in the orbits through Fhj. Inspection 
shows that the isotropy group (in S3) at each point of F& is the two-element group generated 
by a transposition ri +P rj, while the isotropy group in S3 at each point of Fi2 is trivial. 
Since #F& = 3(22g - l), and the isotropy at each point has two elements, we obtain (3.21e). 
Next, 

#FA2 = #F; - #F& - #F& = 42R - 1 - 3(22g - 1) = 42g - 3 .2s + 2, 

and so, since S3 acts freely on #Fi2, we have #Fh,/& is ith of #FA2. Finally, #Fo/& is 
the sum of the #Fhj/S3. 0 
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We are interested in the set 

To(z) = F0 n kg1 (z), 

and the quotient 

(3.22a) 

M;(z) = 7u(z)/SO(3) 21 F; n Z?,‘(z)/S3. (3.22b) 

The set 70(z) is the union of the subsets Foj n kR1 (z). 
For the purpose of counting, we shall view a point of {I, tl , q, T~}~R as a g-tuple of pairs 

(Ui, Z%) E {Z, t1, x2, d2. 

By Observation 3.3(ii), for (a, b) E {I, tl, q, Q}~ (with2 denoting, as usual, any element 
of SU(2) covering x E SO(3)) 

&-l&-l 

1 

-I = if a and b are distinct elements of (tl , ~2, t3}, 

Z otherwise. 

Let us say that a pair (a, b) E {I, tl, ~2, ~3}~ is positive if i;&-‘k’ = I, and negative if 
G&i-‘k’ = -I. Of the 16 elements in {Z, tl, ~2, ~3}~, 6 are negative and 10 are positive. 

It is readily seen that for a point p = (~1, . . . , pg) E F& 

p E F;, n If,-‘(Z) if #{ j : pj is negative] is even, 

p E FA fl K;’ (-Z) if #{j : pj is negative) is odd. 

Thus the total number of points in F,-J n k;‘(Z) is the sum of the coefficients of the 

even powers of x in the polynomial (10 + 6x)s, while #FA fl I?; ’ (-I) is the sum of the 
coefficients of the odd powers of x in the polynomial (10 + 6~)s : 

#F; n Z?,‘(Z) = ;(16s + 49, #F; n k,‘(-Z) = ; (16g - 4g). (3.22~) 

It is clear that FAo U Fil c k;‘(Z). So 

#F;2nZ?,1(Z)=#F;,nZ?,‘(Z)-#F;o-#F;, 

= ; (16g + 4g) - 1 - 3(22” - 1) 

and 

F; n Z?;‘(-Z) = Fi2 n K,-‘(-Z). 

Combining all these observations, we obtain: 

(3.22d) 

(3.22e) 

Theorem 3.23. 
(i) Fu(Z) is the union of&joint S0(3)-invariant subsets 

To(Z) = 700(Z) u FOl(0 u FOZ(O> 

where FOCI(Z) = {(I, I, . . . , I)], Fol (I) is the subset consisting ofpoints where the 
isotropy group is the normalizer of a maximal torus in S 0 (3), and To2 (I) is the subset 
consisting of points where the isotropy is a four-element group. 
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(ii) 701 (I) is a two-dimensional submanifold of SO(3)2s. The quotient Fol (Z)/SO(3) 
is a finite set, and each fiber of the projection .Tol (I) -+ 701 (Z)/SO(3) is diffeo- 
morphic to S0(3)/N(K), where N(K) is the normalizer of any maximal torus K in 
SO(3). 

(iii) Fo2(Z) is a three-dimensional submanifold of SO (3) 2g ThequotientFo2(Z)/SO(3) is . 
afinite set, and eachfiber of theprojection F02(1) + 702(Z)/S0(3) is diffeomorphic 
to SO(3)/{Z, tl, ~2, x3), where tl, ‘52, t3 are 180” rotations around orthogonal axes. 

(iv) Fu(-I) isathree-dimensionalsubmanifoldofS0(3)2s. Thequotient To(-Z)/SO(3) 
is ajinite set, andeachfiberoftheprojectionF~(-I) + Fo(-Z)/SO(3) isdiffeomor- 
phic to SO(3)/( I, ~1, ~2, q}, where tl , ~2, q are 180” rotations around orthogonal 
axes. 

Focusing on the quotients Fu(z)/SO(3), we have: 

Theorem 3.24. The sets M:(Z) and ME(-Z) are discrete, and 

#M;(Z) = $24g + 7 . 22g + 41, #M;(-Z) = &[16g - 4g]. 

Proof #M:(Z) = #To(Z)/SO(3) = #Fi f~ K;‘(Z)/SO(3) is obtained by adding up 

the #Fij fl K;‘(Z)/SO(3) (which are given in (3.22~) and (3.22d). For Mi(-Z) = 

Fo(-Z)/SO(3) = FA fl K;‘(-Z)/S0(3), we use (3.22e) and (3.22~). 0 

4. Some technical facts 

In this section we record some technical facts used elsewhere in this paper. 

Lemma 4.1. Let X, Y be vector spaces, and L 1, L2 : X + Y surjective linear maps such 
that 

ker(L1) + ker(L2) = X. (4.la) 

Then 

Lt([ker(Li + L2)l) = Y. (4.lb) 

Proof Condition (4.la), together with the fact that L1 and L2 are surjective, implies that 
L1 maps ker L2 onto Y. Similarly, Lz(ker Ll) = y. Let y E Y. We can choose XI E ker L2 
andx2EkerL1suchthatLlxl=yandL2x2=-Y.Letx=xl+x2.ThenLlx=yand 
L2x = -y. Sox E ker(Li + Lz). 0 

Application of Lemma 4.1. We used Lemma 4.1 in the proofs of Proposition 2.7. Let 
g >_ 2, and consider the maps C, : G2g -+ G : (xi, yi, . . . , xg, ys) H y;‘x;‘y,.x,, and 
K = C,... Cl, and K’ = C, . . . C2. We will show that Cl restricted to the submanifold 
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F’(h) = C;‘(G\{Z, h}) n K;‘(h) is a submersion, for any h E G. Working at a fixed 

point on F’ (h), let 

Lt = C,‘dC’,, L2 = (AdC;‘)K’-‘dK’. 

ThenkerLz ~gcBgcBlOl@ 
kerLt +kerLz=g . 

. ..@{O}.andkerLt ZI {O}${O}@g@...@g,andso 

2g Moreover, by Lemma 2.4(ii), at any point in y(h), LI and L:! are _ 
surjective. Using K = K’C,, we have K-‘dK = LI + L2. So, by Lemma 4.1, this implies 
that LlI ker(K-‘dK) is surjective. Since ker(K-‘dK) is the (left-translated) tangent space 
to .FT’ (h), we conclude that Ct 13’(h) is a submersion. 

4.1. Group actions on manifolds 

We have used the following result several times: 

Proposition 4.2. Let G be a compact Lie group, M a smooth manifold, M x G + M : 
(m, g) H mg a free smooth right action, and let p : M -+ M/G be the corresponding 
quotient map onto the quotient space M/G. Then there is a (unique) smooth manifold 
structure on Ml G for which p is a submersion; with this structure on M/G, the projection 
p : M -+ M/G, along with the action of G on M, is a smooth principal G-bundle. 

This result isprovedin [l, 16.14.1 and 16.10.31 ([l, 16.10.31 is stated with the hypothesis 
that {(m, mg) : m E M, g E G] is a closed submanifold of M x M; this condition may 
be verified by examining the map f : M x G + M x M : (m, g) H (m, mg) and using 
the compactness of G along with the hypothesis that the action of G on M is free; f is a 
smooth one-to-one immersion and its image is closed in M2). 

Lemma 4.3. Let G be a compact Lie group acting smoothly and isometrically on a 
Riemannian manifold M: 

G x M + M : (x,m) H ym(x) =xm. 

Suppose that the isotropy group is the same subgroup H C G at every point of M. Fix 
an Ad-invariant metric on the Lie algebra g of G, and let h be the Lie algebra of H. Let 
dy,,, : g + Tm M be the derivative of y,,, atthe identity in G. Then - 

m H 1 det(dy, ]h’ : 44’ + T,M)I (4.2a) 

is a G-invariantfunction of m, thus dejning afunction I det dy lhll on M/G. 
If f is any G-invariant Borelfunction on M, then 

s 
f dvol M = vol (G/H) 

s 
f I det d y ]bl I dvol M/G (4.2b) 

M M/G 

(either side existing if the other does) where vol denotes Riemannian volume on the appro- 
priate spaces (taken as counting measure when the space is discrete), and f is thefunction 
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on M/G induced by f. ( In particulal; if H is$nite then (4.3b) holds with vol (G)/#H for 
vol (G/H)). 

Proo$ We shall denote the action of the derivative of m cf xm on u E T, M by x . v. From 

yym(x) = YY~(Y-‘xY), we have dyYm = Y . Wm o Ad (y-l); thus (4.2a) is G-invariant 
since the G action m H ym is an isometry and since the metric on g is Ad-invariant. 

The isotropy group H being the same everywhere, it follows that ?Z is a normal (closed) 
subgroup of G. The induced action of the group G/H on M is smooth and free, and therefore, 
by Proposition 4.2, M/G 21 M/(G/H) is a smooth manifold and the quotient map n : 
M + M/G specifies a smooth principal G/H-bundle. Consider then a G-equivariant 
diffeomorphism 

(G/H) x U&-‘(U), (4.3a) 

where U is a non-empty open subset of M/G, and X$(X H, u) = u for every u E U and 
x E G. Note that G-equivariance means that $(gxH, u) = ym(g) where m = +(xH, u). 
We split the tangent space Tm M into orthogonal subspaces (note that b’ corresponds to the 
Lie algebra of G/H) : 

TmM = dY,&‘) +dy,,zK+ = dv,&) @ T,(M/G), (4.3b) 

where the 21 is obtained from the unitary isomorphism [dy, (h’)]* + T, (M/ G) given by 
dn (the condition that this restriction of dn is unitary defines the metric on M/G). Thus 
the matrix of d+(,H,U) has the form 

(4.3c) 

Consequently, 

I detWI(xH,u)I = I Wdymlh’)l. (4.3d) 

It follows that Eq. (4.3b) holds for f supported in n-‘(U). By using a partition of unity 
argument it follows that (4.3b) holds for all compactly supported continuous G-invariant 
functions f. Then, by definition of the measures vol M and vol M/G, Eq. (4.3b) holds for 
any G-invariant Bore1 function f 2 0, and hence for any Bore1 f for which either side of 
(4.3b) exists. 0 

5. The symplectic structure 

We work with a principal G-bundle rc : P + E over a closed oriented surface .X of genus 
g 2 1, where the structure group G is SU(2) or SO(3), equipped with an Ad-invariant 
metric. There is a standard symplectic structure 52 on the infinite-dimensional space A of 
connections on P. The action on A of the group 6 of bundle automorphisms preserves the 
symplectic structure, and there is a moment map J whose value J(w), for any w E A, 



246 A. Sengupta/Journal of Geometry and Physics 28 (1998) 209-254 

can be identified with the curvature of w. The Marsden-Weinstein procedure then yields, 
formally, a 2-form 3 on the moduli space of flat connections M” = J-’ (0)/G (a rigorous 
account of this presented in [7]). Now let A 1, B1, . . . , A,, B, be standard loops generated 
rrt (E, o), where o is a fixed basepoint on C and B,A, B,A, . . . B,A, B,A, is the identity 
in rrt (E, 0). Denoting by h(C; w) the holonomy of a connection w around a loop C based 
at o (using a fixed reference point on the fiber x-’ (o)), we have the map 

‘FI : A + G2K : o H @(Al; o), h(B1; w), . . . , h(A,; w), h(B,; w)). 

This map carries the set do of flat connections onto the subset i?;’ (z), where 

Z& : G2” --+ G : (al, bl, . . . , uK, bR) H &;‘ii;l&Z, . . +?;‘&Z,, 

with X denoting any element in the universal cover G of G projecting to x E G, and z is a 
certain element of ker(G -+ G) which characterizes the topology of the bundle P. In fact, 
3-1 induces a bijection 

% : do/G + Z?,‘(z)/G, 

where the quotient on the right is with respect to the action of G given by conjugation 
of each coordinate in G2g. We will always identify MO = do/G with Z?,‘(z)/G in this 

way. There is a 2-form P on G 2s whose restriction to Z?,‘(z) is the lift of the 2-form Q 
mentioned earlier. 

We will work with the group G2g, where g 2 1 and G is either SU(2) or SO(3). It will 
be useful to label the coordinates of a point of G2g with subscripts in the following way; 
let 

J = { 1,2,5,6, . . . ,4g - 3,4g - 2). (5.la) 

Thus J is a set with 2g elements; we shall take a typical point of G2g to be (oj)je~. We 
then define oi, for i E (3,4,7,8, . . . ,4g - 1,4g - 2) = J + 2 by 

-' iXj+2 = ffj for all j E J. (5lb) 

A vector in the tangent space T, G2g then has the form (Y I H, where H E g2g has components - 
(Hj)jcJ; we set 

Hj+2 = -Ad(oj)Hj for all j E J. 

The 2-form Sz’ on G2g, defined on vectors a! W, aZ E TaG2g by 

Q’(ow,oz) = i C Eik(fiI\WiYi .fzlZk)3 

lii,k54g 

(5lc) 

(5.2a) 

wherefi =Ad(oi...ot)foreachi ~{1,...,4g},foistheidentitymap,and 

1 if i -C k, 
6ik = -1 ifi>k, 

0 if i = k. 

(5.2b) 



A. Sengupta/Journal of Geometry and Physics 28 (1998) 209-254 247 

By appropriate left-translation, the derivative of Kg at cr may be taken to be a map 
dK, : g2g + g; denote by dK, (a)* : g + g 2g its adjoint with respect to the metric on g. 

Here are some useful properties of J?’ (proofs may be found in [4] or [7]): - 

Proposition 5.1. 
(i) D’ is G-invariant. 

(ii) L$(A, B) is 0 if A E TPG2g is tangent to a smooth path lying on K,‘(z) and B is 
tangent to the G-orbit through p. 

(iii) dfi’(A, B) = 0 ifA, B are tangent to K;‘(z). 

(iv) Let yol : G -+ K,‘(z) : x H xczx -’ be the orbit map. Recall the product commutator 

map KR : G2g + G. If CY E K;‘(z) then 

f2;, o dy, = d&(a)*, (5.3) 

where fi; is specified by Q/(X, Y) = (X, QAY). 

Eq. (5.3) says that dZ$ is like a moment map. 

Recall that when G = SU(2), K;‘(Z) is theunionof manifolds .F3(~-2), F+, 31, while 

for G = S0(3), K;‘(z) is the union of manifolds Fs(+2)(2), FQ(z), 7+2(z), 70(z), 

where FQ(z) is empty if z = -I. The corresponding quotients under the conjugation 
action of G are denoted M!(z) (if G = SU(2), z can only be I and we drop it from the 
notation sometimes), with k E (3(2g - 2), 2g, 2g - 2,O). 

Proposition 5.2. There is a unique smooth closed 2-farm n on each stratum of M!(z), 
whose ltft to each of the manifolds which make up K;‘(z) is Sz’ restricted to that 
manifold. 

Pro08 As proved in Section 3 in all the separate cases, the quotient map 2;’ (z) + 

K;‘(z)/G is a fiber bundle projection over each M!(z). Thus 52’ can be pulled down by 
smooth local sections. The properties of Q’ listed in Proposition 5.1(i) and (ii) imply that 
if s1 and s2 are two smooth local sections of Kg’ (z) + K,’ (z)/G in a neighborhood 

of some point in M!(z) then s;C?’ = $52’. Thus we can define n unambiguously as 
the 2-form, on each ME(z), given locally by pullbacks of a’ by smooth local sections of 
K;](z) + Z?;’ (z)/G. Since dD’ = 0 on K,‘(z) and the fiber-bundle projection map is 

a submersion, it follows that ds = 0. 0 

6. The symplectic structure on the SU(2) moduli spaces Mt 

In this section we shall work with the moduli space of flat SU(2) connections. The 
group SU(2) is equipped with a fixed Ad-invariant metric (., .). We will show that 3 is a 
symplectic structure on M !$ and we will determine the corresponding symplectic volumes. 
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It has been proven in several works ([5], for instance) that 3 is symplectic on M!&,_2j 

and the volume vol~(M$,,_~, ) has also been determined in a variety of ways [3,9]. 
Let T be a maximal torus in SU(2), and n E N(T)\T, where N(T) is the normal- 

izer of T in SU(2). The two-element group W = {I, n} acts freely on T2g\{fZ}2g by 
conjugation. Let FQ be the subset of Kg’ (I) c SU(2)2R consisting of all points where 
the isotropy group of the conjugation action of SU(2) is a maximal torus in SU(2). By 
definition, M ;, = F2g/SU( 2 . Recall from (2.10~) that the inclusion map T2g\{fZ}2g c > = 

.F& induces a diffeomorphism 0 : T2g\{kZ}2g/W + &,/SU(2) = M;,. Thus n 

on Mtg is simply the projection on T2R\{&Z}2g/ W of the restriction G”IT’g\{*Z}‘g. 

inclusion 
+ F2&! c SU(2)Q 

1 (6.la) 

III 
5 ~2glSUW = M& 

1 

T2g\{&Z}2”/ W 

Recall that we are working with a fixed Ad-invariant metric (., .) on the Lie algebra of 
SU(2), and the symplectic form ?? is defined in terms of this metric. 

Proposition 6.1. 
(i) The restriction of a’ to T2g is given on vectors H(l), Hc2) E TxT2g by 

Q’(H(‘), Hc2)) = &A!‘), B!“) - (A?‘, B,(l))), 
i=l 

(6.lb) 

where H(l) = x . (A!‘), B,(l), . . . , A;), Bi’)), and Hc2) is related similarly to the 

A!2) and Bs2) I ‘-I 
(ii) The 2-form 0 on C.& is a symplectic form. 

(iii) The volume of Mig with respect to the symplectic form n is 

vo15(M%) = ;[4n~ol(SU(2))]~~‘~, (6. lc) 

where vol(SU(2)) is the volume of SU(2) with repect to the metric (., .). 

Proo$ Since each component of x is in T, it follows that, in the notation of Eq. (6.lb), 
fir:(X) =Xforeveryi E (l,... ,4g) and every X E t, the Lie algebra of T. Moreover, 

in (5.2a), W and Z have the form (A!), B,(“), -AI”), -B1(‘), . . . , A:‘, BP’, -A!), -Bf)). 

Using this in (5.2a) we see that the term involving Al’) is : 

; (A;‘), 0 + Bj2) - A!2) - Bs2’ + 0) 

+‘( _ A!‘) 0 _ Ai2) _ 
I 

2 I’ I Bi(2) - Bi(2) + 0) = (A!‘), By’). 
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Similarly, the term involving B,“’ in Eq. (52a) equals -(B!“, Ay’). Adding up over 

i=l , . . . , g yields Eq. (6.1 b). 
We can see directly from (6.lb) that PIT@ is invariant under W and thus induces a 

2-form 52 on the quotient 2: M!&. Moreover, the 2-form PIT28 given in (6.lb), being a 

left invariant form on the abelian group T*g, is closed; expression (6. lb) also shows that it 
is non-degenerate. Since the quotient map (T*g\(&Z}) -+ M!$ is a local diffeomorphism, 

we conclude that 52 is also a symplectic form. 
From (6.lb) we see that the matrix for f2’lT2g relative to a suitable orthonormal basis 

has block-diagonal form, with each block being 

0 1. ( 1 -1 0 ’ 

thus ( det(S2’1T2g)( = 1, and so 

vol,,,r~(T*~\{fZ}~~) = vola&T2g) = v01(T)“~, 

where the last term is the Riemannian volume (=lengtb) of T. Now SU(2), being a 3- 
sphere has volume = 21r~(radius)~, while T, being a great circle in this sphere, has length 
2n (radius). Thus 

vol(T) = 2rr [ vo1($(2))] 1’3 = [4nv01(S~(2)),~~~ 1 

and so 

v0l~,,r2~ (T2g\(S)2g) = [4nv0l(SU(2))]*~‘~, 

Since T2g\{H} + Mig is a two-fold cover, we have the result (6.1~). 

(6.ld) 

0 

7. The symplectic structure on the S 0 (3) module spaces M!(z) 

The determination of the symplectic volumes of the different strata M:(z) will require 
different methods. 

7.1. non M&(Z) 

The stratum Mtg (I) can be understood in a way very similar to Mtg. 

Let T be a maximal torus in SU(2), and T its projection on SO(3). Let n E N(T)\T, 
where N(r) is the normalizer of T in S 0 (3). The two-element group W = (I, n} acts freely 

on ?;2g\{Z}2g by conjugation. Let Fzg (I) be the subset of Kg’ (I) c SO (3)2g consisting 
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of all points where the isotropy group of the conjugation action of S 0 (3) is a maximal torus 
in SO(3). By definition, M;,(Z) = FzR(Z)/S0(3). 

Let t be the 180” rotation belonging to r. Recall, from Theorem 3.9, the commutative 
diagram 

--2g inclusion 
T \{I, T}~” + 728 (0 c SO(3)Q 

1 I (7.la) 

--2g T \{I, ~}~g/ W + %g(Z)lSO(3) = M&(Z) 

where the lower horizontal arrow is a diffeomorphism. 
Thus E on M!&,(Z) is, via the lower horizontal arrow in (7.la), identifiable as the 

projection on F2g\{Z, t)2g/ W of the restriction of 52’ to T2g\(Z, t)2s (the projection 
-% T \{I, t}2g + T2g\(Z, t}2g/ W is a 2-fold covering). 

Recall that we are working with a fixed Ad-invariant metric (., .) on the Lie algebra of 
SU(2), and the symplectic form B is defined in terms of this metric. 

Proposition 7.1. 

(9 The restriction of S2’ to T2g is given on vectors H(l), HC2) E TxT2g by 

(ii) 

(iii) 

D’(H(‘), HC2)) = &A/l), B/“) - (Aj2’, @‘))), 
i=l 

(7.lb) 

where H(l) = x . (A:‘), Bi’), . . . , A:‘, Bi”), and Hc2) is related similarly to the 
A!2) and B!2). 

Tie a-for; (2 on Mig (I) is a symplectic form. 

The volume of M!& (I) with respect to the symplectic form 5 is 

vol,(M;,(Z)) = ; [ ;v0l(SU(2))]~~‘~ , (7.lc) 

where vol(SU(2)) is the volume of SU(2) with repect to the metric (., .). 

Proo$ The argument is virtually the same as in Proposition 6.1. For (iii), we need to observe, 
in addition, that 

vol a,,T2g (T2g\{*z}2g) = vol Q,,+F2g) = v01(T)~~ = &v~l(T)~“, 

where the last equality follows from the fact that SU (2) + S 0 (3) is a 2-fold covering and 
a local isometry. 0 

7.2. z on M;,_,(z) 

Recall that MO 2g_2(z> 2 (~g’(~)nF)/S0(3),whereFisthesubsetofS0(3)~gconsist- 
ing of points where the isotropy group of the SO(3)-conjugation action is a 
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two-element group. Let T be a maximal torus in SO(3), N(T) its normalizer, and B the 
subset of N(T)2g where the isotropy group is not a two-element group (described in detail 
in (3.1 lc), and (3.1 Id). We have the commutative diagram 

K,‘(z) n (N(T)2R\B) 
inclusion 

+ k,‘(z) n F 

-1P 4 P’ 

[K,‘(z) II (N(Tp\B>]/N(T> 5 (i,‘(z) n F)lS0(3) 2: M;g-2(~) 
(7.2a) 

where the bottom arrow is a diffeomorphism. 
Let N’(T) = N(??)/{Z, t}, where t is the 180” rotation in T. The vertical arrow on the 

left in (7.2a) is a fiber bundle projection, and in fact it is a principal N’(T)-bundle. Thus 
aIM!&_2(~) is the 2-form induced via p by fi’]i;’ (z) fl (N(F)2g\B). 

Since the conjugation action of N(T) on N(T)2g is by isometries, the fiber bundle projec- 
tion p induces, in a natural way, a Riemannian metric on Et;’ (z) n (N(T)2g\B)]/N(?‘). 

We shall equip M%_2(~) with the corresponding Riemannian metric induced via z. (A 

vector in some TpN(T)2g which is perpendicular to the N(T)-orbit through p is automat- 

ically perpendicular to the S0(3)-orbit through p; thus g is an isometry when the domain 

and image of z are equipped with the quotient metrics). 
We work with J = { 1,2,5,6, . . . ,4g - 3,4g - 2}, as in (5.la). 

ForS c J,recallfrom(3.16a)and(3.16b)themap@s : r2g + N(T)2g.If~ E ~$s(?;~s) 
then, by definition of q5s, 

7; O!j E ifj ES, 
N(T)\T if j E J\S. 

Thus, for ff E &(T2s), 

Ad(aj) ]t = 
I if j E S, 
-I if j E J\S. 

(7.2b) 

(7.2~) 

where I is the identity map on t. 
We have the orbit map yw : N(T) + N(T)2g : x I+ X(IIX-~, whose derivative, at the 

identity in t, is given by a linear map dy, : t + t2g. On the other hand, we have the 

product commutator map i g : ?;“” -+ T, whose derivative is described by a linear map 
dI?, ]a : t2g + t (all tangent vectors left-translated to the identity). 

Lemma 7.2. For any S c J, and cx E c$~(T)~g, 

det(dy, 1~) = 2J2g-#s = det(dZ?, 1:~). (7.2d) 

Proo$ Differentiating the expression ya (x) = X(IIX-’ at x equal to the identity, we have 
for any X E t: 
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Thus, by (7.2c), the jth entry of dy,(X) is 0 if j E S and it is -2X if j E J\S. Thus 
det dy, 1~ = 2dm = 2Jm. 

Recall that we write CY as (aj)jeJ, where J = { 1,2,5,6, . . . ,4g - 3,4g - 2). Then 
k&Y) = &4g(l14g_1 . . .&I, where, for each j E J, Olj+2 = &,y’ and&j E T C SU(2) is 
any element covering oj . Then 

jcJ 

where fj = Ad(ojoj_t .. . al). Taking the adjoint, we have 

dX, 1:X = ((fj-1 - fj+z)X)je./ > (7.2e) 

here we are working with X E t, in which case dK&X E t’g (the formulas are all valid 
for g in place of 2). Since Ad(c = H, the different Ad(ai) commute, and so, for 
any> E J: 

fj+2 = Ad(aj+2aj+laj) fj-1 
= Ad(U;-‘~j+l~j)f,_l 

= Ad(aj+t)fj_t = fj-1 ifj+lESU(S+2), 

-&-I otherwise, 

where in the last step we used (7.2~) and oj+2 = w_’ . Thus 

jth component of dZ?, I;CX is = 
0 ifj+lESU(S+2), 
2fj_ 1 X = f2X otherwise. 

Thus 

det(dZ?&) = 2J2g-#s’, 

where S’ = {j E J: j + 1 E S U (S + 2)}. Now the mapping f : 5’ + S : j H f(j), 
where f(j) = j f 1 according as j f 1 E 5, is a bijection, So #S’ = #S, and so det(dk, 1:) 
is as in (7.2d). 0 

Proposition 7.3. The 2-form nlM” 2g_2(z) is symplectic. Moreover, on M!&_2(~) 

Pfaffian(E?) = 1, (7.3a) 

i.e. the volume measure on M!&,(z) induced b y th e symplectic form 5 is the same as the 
Riemannian volume measure. 

Proo$ It is proved in [5] that 

Pfaffian(D) = det dya It 
det dk, I;(’ 

(7.3b) 

(The argument in [S] is for g and zIM!&zg_2, (z) but is valid without any change in the 
present simpler situation.) The result now follows from Lemma 7.2. 0 
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Proposition 7.4. The symplectic volume, with respect to the symplectic structure n, of 
each connected component o~M&_~(z) is 5 [n~ol(SU(2))/2](*~-*)/~. 

Proo$ Recall from Theorem 3.20 that M!&_, (z) is the union of 2*s - 1 connected com- 

ponents Mig_,(z)s, one for each proper subset S of .I = { 1,2,5,6, . . . ,4g - 3,4g - 2}, 

and M&_2(z)s 2: ((i, 0 4s)-‘(z)\Bs)lN’(T). 
Since the symplectic volume measure ~015 coincides with the Riemannian volume 

measure on MO 2g_2(~)r it follows from Lemma 4.3 and the determinant values in (7.2d) 
that 

vol,(M;,_2(z)s) = 
1 1 

vol(N’(T)) &&-=B 
vol[K;‘(z) n &(T*s\Bs)l, (7.4a) 

where vol (with no subscript) is Riemannian volume. 

Since r$s is an isometry and Bs is a submanifold of positive codimension in T*s, it follows 
that the Riemannian volume appearing on the right side in (7.4a) equals the Riemannian 
volume of (kg 0 #s)-‘(z). 

Now, as observed in Proposition 3.17, 

(7.4b) 

where c is any element of T covering tj E ?;, and, for j = 1,5, . . . ,4g - 3, 

I (07 0) if j, j + 1 E S, 

(290) ifjESandj+l$S, 
(mj’mj+l)= (O,-2) ifj$sandj+lES, 

((-2,2) ifj$sandj+l$S. 

(7.4c) 

Fixing a j, E J\S, the map T2g + T*s-’ which carries (Xj)j,J to the projection 

Cxj)jE.I, j#j, is a bijection of (kg o #s)-t (z) onto T -2g-1. The Jacobian of the inverse 
-*g-1 

map T (kg o 4~)~’ (z) is (l/lmj, I,,/-. The specification of the mj above 

shows that this Jacobian equals dm. So 

vol((Ks 0 C&(z)) = J2g-#s VOl(?‘). (7.4d) 

Substituting this into (7.4a), and using vol(T) = ivol(T), as well as the value of vol(T) 
mentioned in (6. Id) we have 

v$+~~~-~;~(z)) = -& 2&&i- voUT*“-‘1 
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= ; [ ;2n (uol~~~(2)))I-3]2x2 

= ; [ 5vol(Su(2))](2p-2)‘3 0 
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