The moduli space of flat $S U(2)$ and $S O(3)$ connections over surfaces

Ambar Sengupta ${ }^{1}$
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA

Received 10 April 1998

Abstract

All the connected components of the moduli space of flat connections on $S U(2)$ and $S O(3)$ (trivial and non-trivial) bundles over closed oriented surfaces are determined. The symplectic structure and volumes of the non-maximal strata of the moduli space are also determined. © 1998 Elsevier Science B.V.

Subj. Class.: Differential geometry 1991 MSC: 53C05; 53C10 Keywords: Moduli space; Flat connections; Surfaces

1. Introduction

In this paper we shall study the moduli space \mathcal{M}^{0} of flat connections on principal G bundles over closed orientable surfaces, where G is $S U(2)$ or $S O$ (3).

Each moduli space is made up of several strata \mathcal{M}_{k}^{0}, each of which is a smooth k dimensional manifold. In the case of $S O(3)$, the moduli space of flat connections on the trivial bundle is denoted $\mathcal{M}^{0}(I)$ (and the strata $\mathcal{M}_{k}^{0}(I)$), and the corresponding space for the non-trivial bundle is denoted $\mathcal{M}^{0}(-I)$ (and the strata $\mathcal{M}_{k}^{0}(-I)$). The detailed structure of the individual strata are described in Theorems 2.1, 3.1, 3.2, 3.7, 3.9, 3.20 and 3.24.

There is a standard symplectic structure on the infinite dimensional space of all connections over a closed oriented surface. It is known that this induces a symplectic structure on the maximal stratum of \mathcal{M}^{0}. In Section 6 we prove that a symplectic structure is also induced on each of the lower-dimensional strata of \mathcal{M}^{0}. The volume of the maximal stratum

[^0]Table 1

Group/bundle	Stratum	Number of components	Volume
$S U(2)$ trivial bundle	$\mathcal{M}_{3(2 g-2)}^{0}$	$1(0$ if $g=1)$	$\begin{aligned} & 2 \operatorname{vol}(S U(2))^{2 g-2} \\ & \quad \times \sum_{n=1}^{\infty} \frac{1}{n^{2} g-2} \end{aligned}$
	$\mathcal{M}_{2 g}^{0}$	1	$\frac{1}{2}[4 \pi \mathrm{vol}(S U(2))]^{2 g / 3}$
	\mathcal{M}_{0}^{0}	$2^{2 g}$	
	$\mathcal{M}_{3(2 g-2)}^{0}(I)$	$1(0$ if $g=1)$	$2^{1-2 g} \operatorname{vol}(S U(2))^{2 g-2}$
			$\times \sum_{n=1}^{\infty} \frac{1}{n^{2} g-2}$
$S O(3)$ trivial bundle	$\mathcal{M}_{2 g}^{0}{ }^{(I)}$	1	$\frac{1}{2}\left[\frac{\pi \mathrm{vol}(S U(2))}{2}\right]^{2 g / 3}$
	$\mathcal{M}_{2 g-2}^{0}(I)$	$2^{2 g}-1(0$ if $g=1)$	$\frac{1}{2}\left[\frac{\pi \operatorname{vol}(S U(2))}{2}\right]^{(2 g-2) / 3}$
	$\mathcal{M}_{0}^{0}(I)$	$\frac{1}{12}\left[2^{4 g}+7 \cdot 2^{2 g}+4\right]$	
$S O(3)$ non-trivial bundle	$\mathcal{M}_{3(2 g-2)}^{0}(-I)$	$1(0$ if $g=1)$	$\begin{aligned} & 2^{1-2 g} \operatorname{vol}(S U(2))^{2 g-2} \\ & \quad \times \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}-2} \end{aligned}$
	$\mathcal{M}_{2 g-2}^{0}(-I)$	$2^{2 g}-1(0$ if $g=1)$	$\frac{1}{2}\left[\frac{\pi \operatorname{vol}(S U(2))}{2}\right]^{(2 g-2) / 3}$
	$\mathcal{M}_{0}^{0}(-I)$	$\frac{1}{12}\left[\begin{array}{ll}16^{g} & 4^{g}\end{array}\right]$	

Note: $\mathcal{M}_{k}^{0}(z)$ is the stratum of dimension k.
of \mathcal{M}^{0} has been determined in other works ([3,9], for instance). In Section 7 we work out the volumes of the lower-dimensional strata $\mathcal{M}_{k}^{0}(z)$, for $S U(2)$ and $S O(3)$.

Table 1 gives a summary of some of the results of this paper (the volumes of the maximal strata are not computed in the present work; see [9, (3.26,28),(4.73)]).

References to the literature on flat connections over surfaces may be found in $[2,3,9,10]$.

2. The moduli space of flat $S U(2)$ connections

Let Σ be a compact connected oriented two-dimensional manifold of genus $g \geq 1$. As is well known, the moduli space \mathcal{M}^{0} of flat $S U(2)$ connections over Σ may be identified with the quotient $K_{g}^{-1}(I) / S U(2)$, where K_{g} is the product commutator map

$$
\begin{equation*}
K_{g}: S U(2)^{2 g} \rightarrow S U(2):\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right) \mapsto b_{g}^{-1} a_{g}^{-1} b_{g} a_{g} \ldots b_{1}^{-1} a_{1}^{-1} b_{1} a_{1} \tag{2.1}
\end{equation*}
$$

and $S U(2)$ acts on $K_{g}^{-1}(I)$ by conjugation in each component (Section 5 has some detail on this identification). In this section we shall use this identification of \mathcal{M}^{0}, along with its topology and smooth structure, with $K_{g}^{-1}(I) / S U(2)$. The main result of this section is:

Theorem 2.1. The moduli space \mathcal{M}^{0} is connected.
Moreover, \mathcal{M}^{0} is the union of disjoint sets $\mathcal{M}_{3(2 g-2)}^{0}, \mathcal{M}_{2 g}^{0}$ and \mathcal{M}_{0}^{0}, where:
(i) $\mathcal{M}_{3(2 g-2)}^{0}$ is empty if $g=1$, while for $g \geq 2$ it is a smooth connected manifold of dimension $3(2 g-2)$;
(ii) $\mathcal{M}_{2 g}^{0}$ is a smooth connected $2 g$-dimensional manifold, diffeomorphic to the quotient $\left(S^{1}\right)^{2 g} \backslash\{ \pm 1\}^{2 g} / W$, where S^{1} is the usual circle group of unit modulus complex numbers, and W is a two-element group $\{I, n\}$ acting on $\left(S^{1}\right)^{2 g}$ by $n \cdot\left(z_{1}, \ldots, z_{2 g}\right)=$ $\left(z_{1}^{-1}, \ldots, z_{2 g}^{-1}\right)$;
(iii) \mathcal{M}_{0}^{0} is a set consisting of $2^{2 g}$ points.

The proof of this will be completed by combining several results we shall prove below. However, we shall sketch first the general outline of the argument. The conjugation action of $S U(2)$ on $S U(2)^{2 g}$ carries $K_{g}^{-1}(I)$ into itself and we may decompose $K_{g}^{-1}(I)$ according to the type of isotropy groups:

$$
\begin{equation*}
K_{g}^{-1}(I)=\mathcal{F}_{3(2 g-2)} \cup \mathcal{F}_{2 g} \cup\{ \pm I\}^{2 g} \tag{2.2}
\end{equation*}
$$

where
(i) $\mathcal{F}_{3(2 g-2)}$ is the set of points where the isotropy group is $\{ \pm I\}$, and
(ii) $\mathcal{F}_{2 g}$ the set of points where the isotropy group is a torus in $S U(2)$.

We have then the corresponding decomposition

$$
\begin{equation*}
\mathcal{M}^{0}=\mathcal{M}_{3(2 g-2)}^{0} \cup \mathcal{M}_{2 g}^{0} \cup \mathcal{M}_{0}^{0} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{M}_{3(2 g-2)}^{0}=\mathcal{F}_{3(2 g-2)} / S U(2) \quad \text { and } \quad \mathcal{M}_{2 g}^{0}=\mathcal{F}_{2 g} / S U(2), \tag{2.4}
\end{equation*}
$$

The connectivity of \mathcal{M}^{0} and the structures of the strata $\mathcal{M}_{3(2 g-2)}^{0}$ and $\mathcal{M}_{2 g}^{0}$ will be obtained by analyzing the sets $K_{g}^{-1}(I), \mathcal{F}_{3(2 g-2)}$, and $\mathcal{F}_{2 g}$.

2.1. The isotropy groups

The following simple result (Section 3.7 in [11], Proposition B.III in [4]) is very useful:

Lemma 2.2. Let H be a compact connected Lie group, equipped with an Ad-invariant metric. Consider the map

$$
\kappa_{r}: H^{2 r} \rightarrow H:\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right) \mapsto y_{r}^{-1} x_{r}^{-1} y_{r} x_{r} \ldots y_{1}^{-1} x_{1}^{-1} y_{1} x_{1}
$$

and the conjugation action of H on $H^{2 r}$ given by (writing $x=\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$):

$$
H \times H^{2 r} \rightarrow H^{2 r}:(a, x) \mapsto \gamma_{x}(a)=\left(a x_{1} a^{-1}, a y_{1} a^{-1}, \ldots, a x_{r} a^{-1}, a y_{r} a^{-1}\right)
$$

For $x \in H$, let $Z(x)$ be the set of elements of H which commute with x. Thus the isotropy group \mathcal{I}_{x} of the action of H at $x=\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ is equal to $Z\left(x_{1}\right) \cap Z\left(y_{1}\right) \cap \cdots \cap$ $Z\left(x_{r}\right) \cap Z\left(y_{r}\right)$. Then

$$
\operatorname{ker}\left(\left.\mathrm{d} \kappa_{r}\right|_{x} ^{*}\right)=\text { Lie algebra of } \mathcal{I}_{x}=\left.\operatorname{ker} \mathrm{d} \gamma_{x}\right|_{e}
$$

(where e is the identity element of H).
The following describes the isotropy groups of the conjugation action of $S U(2)$ on $S U(2)^{k}$.

Lemma 2.3. Let $x=\left(x_{1}, \ldots, x_{k}\right) \in S U(2)^{k}$. The isotropy group at x of the action of $S U(2)$ on $S U(2)^{k}$ is either $S U(2)$, or a maximal torus T, or $\{ \pm I\}$:

$$
\text { the isotropy group }= \begin{cases}S U(2) & \text { if each } x_{i} \in\{ \pm I\} \\
\text { a maximal torus } T & \text { if all the } x_{i}, x_{j} \text { commute with } \\
& \begin{array}{l}
\text { each other }(\text { thereby all lying in a } \\
\\
\text { maximal torus } T) \text { but are not all } \pm I \\
\{ \pm I\} \\
\\
\text { if there exist two elements in } \\
\left\{x_{1}, \ldots, x_{k}\right\} \text { which do not commute. }
\end{array}\end{cases}
$$

Proof. The case where the isotropy group is $S U(2)$ is clear. The other cases may be deduced from the following observations. If $a, b \in S U(2), b \neq \pm I$, and $a b=b a$, then a belongs to the maximal torus containing b; this is readily verified by taking b to be a diagonal matrix. On the other hand, suppose $a b \neq b a$, and consider $x \in Z(a) \cap Z(b), x \neq \pm I$; then, taking a to be diagonal, we see that, since $a \neq \pm I, x$ is also diagonal and, since $x \neq \pm I$, this implies that b is diagonal, thus contradicting $a b \neq b a$. Thus $Z(a) \cap Z(b)=\{ \pm I\}$ if $a b \neq b a$.

2.2. The product commutator map

We list some useful observations about the product commutator map:
Lemma 2.4. Let r be an integer ≥ 1, and consider the map

$$
K_{r}: S U(2)^{2 r} \rightarrow S U(2):\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right) \mapsto y_{r}^{-1} x_{r}^{-1} y_{r} x_{r} \ldots y_{1}^{-1} x_{1}^{-1} y_{1} x_{1}
$$

(i) The map K_{r} is surjective.
(ii) The critical points of K_{r} all lie in $K_{r}^{-1}(I)$.
(iii) $K_{1}^{-1}(I)$ is the set of critical points of K_{1}.
(iv) If $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ is a critical point of K_{r} then $Z\left(x_{1}\right) \cap Z\left(y_{1}\right) \cap \cdots \cap Z\left(x_{r}\right) \cap Z\left(y_{r}\right)$ is either $S U(2)$ or a maximal torus in $S U(2)$.
(v) If $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ is not a critical point of K_{r} then $Z\left(x_{1}\right) \cap Z\left(y_{1}\right) \cap \cdots \cap Z\left(x_{r}\right) \cap$ $Z\left(y_{r}\right)=\{ \pm I\}$.
(vi) $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ is a critical point of K_{r} if and only if $x_{1}, y_{1}, \ldots, x_{r}, y_{r}$ all lie in one maximal torus in $S U(2)$ (they commute with each other).

Proof. (i) This is a general fact valid for compact connected topological groups having finite center, not only for $S U(2)$. But for $S U(2)$, it suffices to observe that any

$$
\left(\begin{array}{cc}
\beta & 0 \\
0 & \bar{\beta}
\end{array}\right) \in S U(2)
$$

can be written as $b^{-1} a^{-1} b a$ for some $a, b \in S U(2)$; for instance,

$$
b=\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad \text { and } \quad a=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \bar{\alpha}
\end{array}\right)
$$

wherein α is a square-root of β.
(ii)-(vi) follow by combining Lemmas 2.2 and 2.3. For example, for (ii), if $x=\left(x_{1}, y_{1}\right.$, \ldots, x_{r}, y_{r}) is a critical point of K_{r} then, by Lemma 2.2, the isotropy group at x of the $S U(2)$ action on $S U(2)^{2 r}$ has non-zero Lie algebra. Then, by Lemma 2.3, all the x_{i}, y_{j} commute, and so $K_{r}(x)=I$.

2.3. Decomposition of $K_{r}^{-1}(c)$ into manifolds

If $c \in S U(2) \backslash\{I\}$ then, by Lemma 2.4(ii), c is a regular value of K_{g} and so $K_{g}^{-1}(c)$ is a smooth submanifold of $S U(2)^{2 g}$. So we shall focus on $K_{g}^{-1}(I)$. As noted in (2.2), we have the decomposition

$$
\begin{equation*}
K_{g}^{-1}(I)=\mathcal{F}_{3(2 g-2)} \cup \mathcal{F}_{2 g} \cup\{ \pm I\}^{2 g} \tag{2.5a}
\end{equation*}
$$

according to the isotropy type of the conjugation action of $S U(2)$ on $K_{g}^{-1}(I)$. Since $\mathcal{F}_{3(2 g-2)}$ is, by definition, the set of all points on $K_{g}^{-1}(I)$ where the isotropy group of the $S U(2)$ conjugation action is $\{ \pm I\}$, it follows from Lemmas 2.3 and 2.4(iv) and (v) that

$$
\begin{equation*}
\mathcal{F}_{3(2 g-2)}=K_{g}^{-1}(I) \cap U_{\mathrm{nc}} \tag{2.5b}
\end{equation*}
$$

where U_{nc} is the set of all non-critical points of K_{g}.
If $g=1$ then, by Lemma 2.4(iii), $K_{g}^{-1}(I)$ consists only of the critical points of K_{g} and so, by (2.5b), $\mathcal{F}_{3(2 g-2)}$ is empty.

Now suppose $g \geq 2$. Then, by the surjectivity of K_{g} (Lemma 2.4(i)), we can pick $x=\left(x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right) \in K_{g}^{-1}(I)$ for which $K_{1}\left(x_{1}, y_{1}\right) \neq I$. Then, by Lemma 2.4(v), x is not a critical point of K_{g}. Thus $\mathcal{F}_{3(2 g-2)}$ is non-empty, if $g \geq 2$. Thus, when $g \geq 2$,

$$
\begin{align*}
\mathcal{F}_{3(2 g-2)}= & \left(K_{g} \mid U_{\mathrm{nc}}\right)^{-1}(I) \text { is a smooth } 3(2 g-1) \text {-dimensional submanifold } \\
& \text { of }\left(\text { the open set } U_{\mathrm{nc}} \subset\right) S U(2)^{2 g} . \tag{2.5c}
\end{align*}
$$

Next we consider $\mathcal{F}_{2 g}$. By definition, $\mathcal{F}_{2 g}$ consists of those points in $K_{g}^{-1}(I)$ where the isotropy group is a maximal torus in $S U(2)$. Let T be a maximal torus in $S U(2)$. Thus the map

$$
\begin{equation*}
\Phi^{1}: S U(2) \times T^{2 g} \rightarrow S U(2)^{2 g}:\left(x, t_{1}, \ldots, t_{2 g}\right) \mapsto\left(x t_{1} x^{-1}, \ldots, x t_{2 g} x^{-1}\right) \tag{2.6a}
\end{equation*}
$$

has image $\mathcal{F}_{2 g} \cup\{ \pm I\}^{2 g}$; this follows from Lemma 2.3.

Computing $\mathrm{d} \Phi^{1}$ at a point $(x, p)=\left(x,\left(t_{j}\right)_{j}\right)$, we have

$$
\begin{equation*}
\mathrm{d} \Phi^{1}\left(x X,\left(t_{j} v_{j}\right)_{j}\right)=\Phi^{1}(x, p) \operatorname{Ad}(x)\left[v_{j}-\left(1-\operatorname{Ad}\left(t_{j}^{-1}\right) X\right]\right. \tag{2.6b}
\end{equation*}
$$

Splitting X as $X_{| |}+X_{\perp}$, where $X_{| |} \in L(T)$ (the Lie algebra of T) and $X_{\perp} \in L(T)^{\perp}$, we see that $\left(x X,\left(t_{j} v_{j}\right)_{j}\right)$ lies in ker $\mathrm{d} \Phi^{1}$ if and only if each v_{j} is 0 and $\operatorname{Ad}\left(t_{j}\right) X_{\perp}=X_{\perp}$, for each j. If some $t_{j} \neq \pm I$ then the condition $\operatorname{Ad}\left(t_{j}\right) X_{\perp}=X_{\perp}$ is equivalent to $X_{\perp}=0$, i.e. $X \in L(T)$. Thus the map Φ^{1} induces, by restriction and quotient, an immersion

$$
\begin{equation*}
\Phi:(S U(2) / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) \rightarrow S U(2)^{2 g} \tag{2.6c}
\end{equation*}
$$

whose image is $\mathcal{F}_{2 g}$. Examining Φ, we see that it induces a continuous one-to-one map

$$
\begin{equation*}
\bar{\Phi}:\left[(S U(2) / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)\right] / W \rightarrow S U(2)^{2 g} \tag{2.6d}
\end{equation*}
$$

with image $\mathcal{F}_{2 g}$, where the quotient $[\cdots] / W$ is under the action of $W=N(T) / T \simeq\{I, n\}$, the Weyl group of T, on $(S U(2) / T) \times T^{2 g}$ specified by

$$
n T \cdot\left(x T, t_{1}, \ldots, t_{2 g}\right)=\left(x n^{-1} T, t_{1}^{-1}, \ldots, t_{2 g}^{-1}\right)
$$

This action is free and restricts to a free action on $(S U(2) / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)$, and so $\left[(S U(2) / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)\right] / W$ is a smooth manifold, the corresponding quotient map being a 2 -fold covering. Since Φ^{1} maps closed sets to closed sets, the map $\bar{\Phi}$ takes closed sets to (relatively) closed subsets of $\mathcal{F}_{2 g}$; thus $\bar{\Phi}$ gives a homeomorphism onto $\mathcal{F}_{2 g}$, taken as a subspace of $S U(2)^{2 g}$. Since Φ is an immersion, so is $\bar{\Phi}$. Thus

$$
\begin{equation*}
\mathcal{F}_{2 g} \text { is a submanifold of } S U(2)^{2 g} \tag{2.7a}
\end{equation*}
$$

and $\bar{\Phi}$ gives a diffeomorphism onto $\mathcal{F}_{2 g}$. In particular,

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}_{2 g}=2 g+2 \tag{2.7b}
\end{equation*}
$$

Thus $K_{g}^{-1}(I)$ is the union of the disjoint sets $\mathcal{F}_{3(2 g-2)}, \mathcal{F}_{2 g},\{ \pm I\}^{2 g}$, where $\mathcal{F}_{3(2 g-2)}$ is a $3(2 g-1)$-dimensional submanifold of $S U(2)^{2 g}$ and $\mathcal{F}_{2 g}$ is a $(2 g+2)$-dimensional submanifold of $S U(2)^{2 g}$.

Note that each of the manifolds making up $K_{g}^{-1}(I)$ is of codimension ≥ 2 in $S U(2)^{2 g}$.

2.4. Structure and connectivity of the sets $K_{g}^{-1}(c)$

We will prove that each $K_{g}^{-1}(c)$ is connected and, furthermore, that the manifolds $\mathcal{F}_{3(2 g-2)}$ and $\mathcal{F}_{2 g}$ (which make up $K_{g}^{-1}(I)$) are also connected.

The arguments for connectivity of $K_{g}^{-1}(c)$ and $\mathcal{F}_{2 g}$ will have a Morse theoretic flavor but we will work through detailed 'elementary' arguments, since these will yield additional facts which will be useful for other purposes.

The space $\mathcal{F}_{2 g}$ is connected because it is the image of a connected space under the continuous map $\bar{\Phi}$, as seen in (2.6 d).

We turn now to $K_{g}^{-1}(c)$. The argument will be inductive, with the following observation leading to the first inductive step.

Lemma 2.5. Let $r \geq 1$ and let $C: S U(2)^{2 r} \rightarrow S U(2)$ be a product of commutators of some of the pairs $\left(x_{i}, y_{i}\right)$ (more precisely, $C=C_{i_{1}} \cdots C_{i_{k}}$ for some distinct $i_{1}, \ldots, i_{k} \in$ $\{1, \ldots, r\}$). Then there is a diffeomorphism

$$
\begin{equation*}
\psi:(S U(2) \backslash\{I\}) \times C^{-1}(-I) \rightarrow S U(2)^{2 r} \backslash C^{-1}(I) \tag{2.8a}
\end{equation*}
$$

such that the following diagram commutes:

$$
\begin{array}{ccc}
(S U(2) \backslash\{I\}) \times C^{-1}(-I) & \stackrel{\psi}{\rightarrow} & S U(2)^{2 r} \backslash C^{-1}(I) \\
\searrow \mathrm{pr}_{1} & & \swarrow C \tag{2.8b}
\end{array}
$$

where pr_{1} is the projection on the first factor.
Proof. If $p \in S U(2)^{2 r} \backslash C^{-1}(I)$ then p is not a critical point of C (this follows from Lemma 2.4(iii)). Thus C is a submersion of $S U(2)^{2 r} \backslash C^{-1}(I)$ onto $S U(2) \backslash\{I\}$. Moreover, C is a proper map. Then by Ehresmann's theorem [1,20.8, prob. 4] C is a fibration. Since $S U(2) \backslash\{I\}$ is contractible, it follows that C is a trivial fiber bundle.

Next we have our first connectivity result for $K_{r}^{-1}(c)$:
Proposition 2.6. For any $h \in S U(2) \backslash\{I\}, K_{1}^{-1}(h)$ is a smooth manifold diffeomorphic to $S O$ (3). In particular, $K_{1}^{-1}(h)$ is connected for every $h \neq I$.

Proof. In view of the preceding result, it will suffice to prove that $K_{1}^{-1}(-I)$ is diffeomorphic to $S O$ (3). Let

$$
a_{0}=\left(\begin{array}{cc}
\mathbf{i} & 0 \\
0 & -\mathbf{i}
\end{array}\right) \quad \text { and } \quad b_{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

then $b_{0}^{-1} a_{0}^{-1} b_{0} a_{0}=-I$. It is proven in Lemma 3.13 of [6] that $\phi: S U(2) /\{ \pm 1\} \mapsto$ $S U(2)^{2}: \pm x \mapsto\left(x a_{0} x^{-1}, x b_{0} x^{-1}\right)$ maps $S U(2) /\{ \pm I\}$ onto $K_{1}^{-1}(-I)$. Since a_{0} and b_{0} do not commute, Lemma 2.3 says that $Z\left(a_{0}\right) \cap Z\left(b_{0}\right)=\{ \pm I\}$. Thus ϕ is one-to-one. The map ϕ is smooth, and its derivative is given by

$$
\left.\phi(x)^{-1} \mathbf{d} \phi\right|_{x} X=\left(\operatorname{Ad}(x)\left(\operatorname{Ad}\left(a_{0}^{-1}\right)-1\right) X, \operatorname{Ad}(x)\left(\operatorname{Ad}\left(b_{0}^{-1}\right)-1\right) X\right)
$$

Thus any $\left.X \in \operatorname{ker} \phi(x)^{-1} \mathrm{~d} \phi\right|_{x}$ commutes with both a_{0} and b_{0}; so, since a_{0} and b_{0} do not lie in any one maximal torus, it follows from Lemma 2.3 that X must be 0 . Thus ϕ has no critical points. Since $-I$ is a regular value of K_{1} (Lemma 2.4(ii)), it follows that $K_{1}^{-1}(-I)$ is a (compact) submanifold of $S U(2)^{2}$. We conclude that $\phi: S U(2) /\{ \pm I\} \rightarrow K_{1}^{-1}(-I)$ is a diffeomorphism; since $S U(2) /\{ \pm I\} \simeq S O(3)$, we see that $K_{1}^{-1}(-I)$ is diffeomorphic to $S O(3)$.

Let C_{k} be the commutator in the pair $\left(x_{k}, y_{k}\right)$ in $\left(x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right)$, i.e.

$$
\begin{equation*}
C_{k}: S U(2)^{2 g} \rightarrow S U(2):\left(x_{1}, \ldots, y_{g}\right) \mapsto y_{k}^{-1} x_{k}^{-1} y_{k} x_{k} \tag{2.9a}
\end{equation*}
$$

Then $K_{g}=C_{g} \ldots C_{1}$, and so

$$
\begin{equation*}
K_{g}^{-1} \mathrm{~d} K_{g}=\sum_{j=1}^{g} A d\left(C_{j-1} \ldots C_{1}\right)^{-1} C_{j}^{-1} \mathrm{~d} C_{j} \tag{2.9b}
\end{equation*}
$$

which implies that if some C_{j} is not critical at a point p then K_{g} is also not critical at p.
We will now prove the connectivity of $K_{g}^{-1}(h)$. The argument is inductive. The strategy is to focus on the subset $\mathcal{F}^{1}(h)$ of $K_{g}^{-1}(h)$ on which both C_{1} and $C_{g} \cdots C_{2}$ are non-critical. As we will see, the 'projection' $C_{1}: \mathcal{F}^{1}(h) \rightarrow S U(2) \backslash\{I, h\}$ is a surjective submersion and has connected compact fibers. This will imply that $\mathcal{F}^{1}(h)$ is connected. Next, connectivity of $K_{g}^{-1}(h)$ will be established by showing that any point in $K_{g}^{-1}(h)$ can be connected by a path to some point on $\mathcal{F}^{1}(h)$.

Proposition 2.7. $K_{r}^{-1}(h)$ is connected, for every integer $r \geq 1$, and every $h \in S U(2)$. The set $\mathcal{F}^{1}(h)$, consisting of all points in $K_{r}^{-1}(h)$ where $C_{1} \notin\{I, h\}$, is also connected (and non-empty when $r \geq 2$).

Proof. We will write G for $S U(2)$. It has been shown in Proposition 2.6 that $K_{1}^{-1}(h)$ is connected when $h \neq I$. The connectedness of $K_{1}^{-1}(I)$ follows from the observation that, with T being a maximal torus in $S U(2)$, the map $G \times T^{2} \rightarrow K_{1}^{-1}(I):(x, a, b) \mapsto$ ($x a x^{-1}, x b x^{-1}$) is a continuous surjection (this follows from Lemma 2.4(iii) and (vi)).

Now let $N \geq 2$, and assume that $K_{r}^{-1}(c)$ is connected for every $c \in S U(2)$ and every $r=1, \ldots, N-1$.

We will show first that $\mathcal{F}^{1}(h)$ is connected. The set $\mathcal{F}^{1}(h)$ consists of all points $x \in G^{2 N}$ where $K_{N}(x)=h$ but $C_{1}(x) \notin\{I, h\}$, i.e.

$$
\mathcal{F}^{1}(h)=C_{1}^{-1}(G \backslash\{I, h\}) \cap K_{N}^{-1}(h) \subset G^{2 N}
$$

It follows from Lemma 2.4(i) that $\mathcal{F}^{1}(h) \neq \emptyset$. Moreover,

$$
C_{1}\left(\mathcal{F}^{1}(h)\right)=G \backslash\{I, h\}
$$

for if $g_{1} \in G \backslash\{I, h\}$, then by Lemma 2.4(i), we can choose $p=\left(x_{1}, \ldots, y_{N}\right) \in G^{2 N}$ such that $C_{1}(p)=g_{1}$ and $C_{N}(p) \cdots C_{2}(p)=h g_{1}^{-1}$, and thus $p \in \mathcal{F}^{1}(h)$.

Being a level set of K_{N} in an open subset of the set of non-critical points of $C_{1}, \mathcal{F}^{1}(h)$ is a smooth submanifold of $G^{2 N}$ (by (2.9b), K_{N} is not critical when C_{1} is not critical). It follows from Lemma 4.1 (see Section 4 for a detailed explanation) that the map $C_{1} \mid \mathcal{F}^{1}(h)$: $\mathcal{F}^{1}(h) \rightarrow G$ is a submersion. If $z \in G \backslash\{I, h\}$ then the level set $\left(C_{1} \mid \mathcal{F}^{1}(h)\right)^{-1}(z)=$ $C_{1}^{-1}(z) \cap K_{N}^{-1}(h)$ is compact and connected, being (homeomorphic to) $K_{1}^{-1}(z) \times K_{N-1}^{-1}$ ($h z^{-1}$), which is connected by the induction hypothesis on K_{N-1}. Thus $C_{1} \mid \mathcal{F}^{1}(h)$: $\mathcal{F}^{1}(h) \rightarrow G \backslash\{I, h\}$ is a surjective submersion with compact connected fibers $\left(C_{1} \mid \mathcal{F}^{1}(h)\right)^{-1}$ (z). This implies that $\mathcal{F}^{1}(h)$ is connected : for if $p, q \in \mathcal{F}^{1}(h)$, then we can choose a path
$c:[0,1] \rightarrow G \backslash\{I, h\}$ from $C_{1}(p)$ to $C_{1}(q)$ and then, by the submersive surjectivity of $C_{1} \mid \mathcal{F}^{1}(h)$ and compactness of the fibers of C_{1}, we can find a path $\tilde{c}:[0,1] \rightarrow \mathcal{F}^{1}(h)$ with $\tilde{c}(0)=p$ and $\tilde{c}(1) \in\left(C_{1} \mid \mathcal{F}^{1}(h)\right)^{-1}\left(C_{1}(q)\right)$; connecting $\tilde{c}(1)$ to q by a path in $\left(C_{1} \mid \mathcal{F}^{1}(h)\right)^{-1}\left(C_{1}(q)\right)$ completes the argument.

To prove the connectivity of $K_{N}^{-1}(h)$ it will now suffice to show that any point in $K_{N}^{-1}(h)$ can be connected to a point in $\mathcal{F}^{1}(h)$ by a path lying in $K_{N}^{-1}(h)$. To this end let $p=$ $\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right) \in K_{N}^{-1}(h) \backslash \mathcal{F}^{1}(h)$; thus $C_{1}(p) \in\{I, h\}$.

Suppose $C_{1}(p)=h \neq 1$. Then $K_{N-1}\left(x_{2}, y_{2}, \ldots, x_{N}, y_{N}\right)=I$. Now, as we have seen earlier (2.5b) and (2.7a), $K_{N-1}^{-1}(I)$ is the union of at most three submanifolds of $G^{2(N-1)}$, each of positive codimension. So the point $\left(x_{2}, y_{2}, \ldots, x_{N}, y_{N}\right)$ in the $6(N-1)$-dimensional manifold $K_{N-1}^{-1}(G \backslash\{h\})$ has an open connected neighborhood in which $K_{N-1}^{-1}(I)$ is the union of at most three positive-codimension submanifolds. Thus there is a path $[0,1] \rightarrow$ $G^{2(N-1)}: t \mapsto \tilde{p}_{t}$ such that : $\tilde{p}_{0}=\left(x_{2}, y_{2}, \ldots, x_{N}, y_{N}\right), K_{N-1}\left(\tilde{p}_{t}\right) \neq h$ for all $t \in[0,1]$ and $K_{N-1}\left(\tilde{p}_{1}\right) \neq I$. Thus $K_{N-1}\left(\tilde{p}_{t}\right)^{-1} h \neq I$ for all $t \in[0,1]$ and $K_{N-1}\left(\tilde{p}_{1}\right)^{-1} h \neq h$. Then, since $K_{1}: K_{1}^{-1}(G \backslash\{I\}) \rightarrow G \backslash\{I\}$ is a submersion with compact connected fibers $K_{1}^{-1}(z)$, it follows that there is a path $[0,1] \rightarrow G^{2}: t \mapsto p_{t}^{\prime}$ with $p_{0}^{\prime}=\left(x_{1}, y_{1}\right)$ and $K_{1}\left(p_{t}^{\prime}\right)=K_{N-1}\left(\tilde{p}_{t}\right)^{-1} h$. Then $p_{t} \stackrel{\text { def }}{=}\left(p_{t}^{\prime}, \tilde{p}_{t}\right) \in K_{N}^{-1}(h), p_{0}=p$, and $p_{1} \in \mathcal{F}^{1}(h)$. Thus we have connected the point p to a point in $\mathcal{F}^{1}(h)$ by a path in $K_{N}^{-1}(h)$.

Now suppose $C_{1}(p)=I \neq h$. We wish to show that there is a path in $K_{N}^{-1}(h)$ from p to $\mathcal{F}^{1}(h)$. Since $K_{1}^{-1}(I)$ is connected, we may assume that

$$
y_{1}=\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad \text { and } \quad x_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Let

$$
x_{1}(t)=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} t} & 0 \\
0 & \mathrm{e}^{-\mathrm{i} t}
\end{array}\right) \quad \text { and } \quad y_{1}(t)=y_{1} .
$$

Then the path $[0,1] \rightarrow G^{2}: t \mapsto c(t)=\left(x_{1}(t), y_{1}(t)\right)$, starts $\left(x_{1}(0), y_{1}(0)\right)=\left(x_{1}, y_{1}\right)$, and $K_{1}(c(t))=x_{1}(2 t) \notin\{I, h\}$ for t near 0 but $t \neq 0$. At $t=0$ we have $K_{1}(c(0))=$ $C_{1}(p)=I$. Since $K_{N}(p)=I$ and $C_{1}(p)=I \neq h$, we have $C_{N}(p) \cdots C_{2}(p)=h \neq I$. So, by Lemma 2.4(vi), $K_{N-1}: G^{2(N-1)} \rightarrow G$ is a submersion in a neighborhood of $p^{\prime}=$ $\left(x_{2}, y_{2}, \ldots, x_{N}, y_{N}\right)$. Then by our usual argument there is a path $c_{N-1}:[0,1] \rightarrow G^{2(N-1)}$ such that $c_{N-1}(0)=p^{\prime}$ and, for t near 0 ,

$$
K_{N-1}\left(c_{N-1}(t)\right)=h K_{1}(c(t))^{-1}
$$

Thus $K_{N}\left(c(t), c_{N-1}(t)\right)=h$, and $\left(c(t), c_{N-1}(t)\right) \in \mathcal{F}^{1}(h)$ for small $t \neq 0$. Thus, if $h \neq I$, we have connected p to a point in $\mathcal{F}^{1}(h)$ by a path in $K_{N}^{-1}(h)$.

Finally, suppose $C_{1}(p)=I$ and $h=I$. Since $K_{1}^{-1}(I)$ and (by the inductive hypothesis) $K_{N-1}^{-1}(I)$ are connected, so is $C_{1}^{-1}(I) \cap K_{N}^{-1}(I) \simeq K_{1}^{-1}(I) \times K_{N-1}^{-1}(I)$. So we can connect the point $p \in C_{1}^{-1}(I) \cap K_{N}^{-1}(I)$ to the point $(I, b, \ldots, I, b) \in C_{1}^{-1}(I) \cap K_{N}^{-1}(I)$, wherein

$$
b=\left(\begin{array}{ll}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)
$$

by a path lying in $C_{1}^{-1}(I) \cap K_{N}^{-1}(I)$. So it will suffice to connect the point (I, b, \ldots, I, b) to a point in $\mathcal{F}^{1}(I)$ by a path in $K_{N}^{-1}(I)$. Now let

$$
x_{1}(t)=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} t} & 0 \\
0 & \mathrm{e}^{-\mathrm{i} t}
\end{array}\right) \quad \text { and } \quad y_{1}(t)=b ;
$$

then a simple calculation shows that $K_{1}\left(x_{1}(t), y_{1}(t)\right)=x_{1}(2 t)$. Therefore,

$$
K_{N}\left(x_{1}\left(t^{\prime}\right), y_{1}\left(t^{\prime}\right), \ldots, x_{1}\left(t^{\prime}\right), y_{1}\left(t^{\prime}\right), x_{1}(t), y_{1}(t)\right)=I
$$

where $t^{\prime}=-t /(N-1)$.
Thus

$$
\begin{aligned}
t \mapsto p(t)= & \left(x_{1}\left(-\frac{t}{N-1}\right), y_{1}\left(-\frac{t}{N-1}\right), \cdots, x_{1}\left(-\frac{t}{N-1}\right)\right. \\
& \left.y_{1}\left(-\frac{t}{N-1}\right), x_{1}(t), y_{1}(t)\right)
\end{aligned}
$$

is a path in $K_{N}^{-1}(I)$, which for $t \neq 0$, but near 0 , lies on $\mathcal{F}^{1}(I)$. Of course, $p(0)$ is (I, b, \ldots, I, b), the chosen starting point. Thus $p(0)$ is connectable to a point in $\mathcal{F}^{1}(h)$ by a path in $K_{N}{ }^{1}(h)$.

Finally, we prove that $\mathcal{F}_{3(2 g-2)}$ is connected. This will be done by showing that $\mathcal{F}^{1}(I)$ is a dense subset of $\mathcal{F}_{3(2 g-2)}$; since $\mathcal{F}^{1}(I)$ is connected, it will follow that so is $\mathcal{F}_{3(2 g-2)}$. The density of $\mathcal{F}^{1}(I)$ will be proved by showing that the complement $C_{1}^{-1}(I) \cap \mathcal{F}_{3(2 g-2)}$ is contained in a finite union of submanifolds of $\mathcal{F}_{3(2 g-2)}$ each of codimension ≥ 1. The reason why $C_{1}^{-1}(I) \cap \mathcal{F}_{3(2 g-2)}$ is easier to understand is that it is an open subset of $C_{1}^{-1}(I) \cap$ $K_{g}^{-1}(I)=K_{1}^{-1}(I) \times K_{g-1}^{-1}(I)$, where the first factor can be understood in explicit terms while the second factor can be handled by induction.

Proposition 2.8. Let $g \geq 2$, and recall that $\mathcal{F}_{3(2 g-2)}$ is the set of points in $K_{g}^{-1}(I)$ where the isotropy group of the conjugation action of $\operatorname{SU}(2)$ is $\{ \pm I\}$. Then the set $\mathcal{F}^{1}(I)$, consisting of all points $\left(x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right)$ in $\mathcal{F}_{3(2 g-2)}$ with commutator $y_{1}^{-1} x_{1}^{-1} y_{1} x_{1} \neq I$, is dense in $\mathcal{F}_{3(2 g-2)}$. Consequently, $\mathcal{F}_{3(2 g-2)}$ is connected.

Proof. Let $G=S U(2)$, and $C_{1}: G^{2 g} \rightarrow G$ the commutator in the first pair $\left(x_{1}, y_{1}\right)$. Then the complement of $\mathcal{F}^{1}(I)$ in $K_{g}^{-1}(I)$ is $C_{1}^{-1}(I) \cap K_{g}^{-1}(I)=K_{1}^{-1}(I) \times K_{g-1}^{-1}(I)$. Recall from (2.5a) and (2.7b) that $K_{1}^{-1}(I)$ is the union of $\{ \pm I\}^{2}$ and a four-dimensional manifold, and, for $r>1, K_{r}^{-1}(I)$ is the union of three submanifolds of $S U(2)^{2 r}$ each of dimension $<3(2 r-1)$.

Thus if $g=2$ then $C_{1}^{-1}(I) \cap K_{g}^{-1}(I)$ is the union of the four submanifolds of $S U(2)^{4}$, each of dimension ≤ 8. Recall that, for $g=2, \mathcal{F}_{3(2 g-2)}$ has dimension $3(2.2-1)=9$ and is the intesection of $K_{g}^{-1}(I)$ with the open set $U_{n c}$ of all non-critical points of K_{g}. Thus, intersecting with $U_{n c}$, we see that for $g=2, C_{1}^{-1}(I) \cap \mathcal{F}_{3(2 g-2)}$ is the union of four submanifolds of $\mathcal{F}_{3(2 g-2)}$, each of codimension ≥ 1. Therefore, the complement $\mathcal{F}^{1}(I)$ is, in this case, dense in $\mathcal{F}_{3(2 g-2)}$.

Now suppose $g>2$. Then $K_{g-1}^{-1}(I)$ is the union of three submanifolds of $G^{2(g-1)}$ each of dimension $\leq 3(2(g-1)-1)$. So $C_{1}^{-1}(I) \cap K_{g}^{-1}(I)$ is the union of six submanifolds of $S U(2)^{2 g}$ each of dimension $\leq 3(2(g-1)-1)+4=6 g-5$. Since dim $\mathcal{F}_{3(2 g-2)}=6 g-3$, we see that $C_{1}^{-1}(I) \cap \mathcal{F}_{3(2 g-2)}$ is the union of a finite number of submanifolds of $\mathcal{F}_{3(2 g-2)}$ each of codimension ≥ 2. Hence, the complement $\mathcal{F}^{1}(I)$ is dense in $\mathcal{F}_{3(2 g-2)}$.

2.5. Bundle structures over the strata of \mathcal{M}^{0}

We have shown that $K_{g}^{-1}(I)$ is the union of disjoint sets $\mathcal{F}_{3(2 g-2)}, \mathcal{F}_{2 g}$, and $\{ \pm I\}^{2 g}$, where $\mathcal{F}_{3(2 g-2)}$ and $\mathcal{F}_{2 g}$ are submanifolds of $S U(2)^{2 g}$. The moduli space \mathcal{M}^{0} is identifiable with the quotient $K_{g}^{-1}(I) / S U(2)$. Thus we should understand the quotients $\mathcal{F}_{3(2 g-2)} \rightarrow$ $\mathcal{F}_{3(2 g-2)} / S U(2)$ and $\mathcal{F}_{2 g} \rightarrow \mathcal{F}_{2 g} / S U(2)$.

Proposition 2.9. For $g \geq 2$, the quotient space $\mathcal{F}_{3(2 g-2)} / S U(2)$ is a manifold of dimension $3(2 g-2)$, and the quotient map $\mathcal{F}_{3(2 g-2)} \rightarrow \mathcal{F}_{3(2 g-2)} / S U(2)$ is a principal $S O(3)$ bundle.

Proof. We have already seen that $\mathcal{F}_{3(2 g-2)}$ is a smooth $3(2 g-1)$-dimensional submanifold of $S U(2)^{2 g}$, the conjugation action of $S U(2)$ on $\mathcal{F}_{3(2 g-2)}$ is smooth, being the restriction of the action on $S U(2)^{2 g}$, and, by definition of $\mathcal{F}_{3(2 g-2)}$, has isotropy group $\{ \pm I\}$ everywhere. Therefore, the quotient space $\mathcal{F}_{3(2 g-2)} / S U(2)$ is a smooth $3(2 g-2)$-dimensional manifold and the quotient map $\mathcal{F}_{3(2 g-2)} \rightarrow \mathcal{F}_{3(2 g-2)} / S U(2)$ is a principal $S U(2) /\{ \pm I\}$-bundle (see Proposition 4.2). To conclude, we use the fact that $S U(2) /\{ \pm I\} \simeq S O$ (3).

Next we shall show that $\mathcal{F}_{2 g} \rightarrow \mathcal{F}_{2 g} / S U(2)$ is a fiber bundle and identify it with a specific bundle over $\mathcal{F}_{2 g} / S U(2)$. Let T be a maximal torus in $S U(2)$, and $W=\{I, n\}$ the corresponding Weyl group acting on T by $n(t)=n t n^{-1}=t^{-1}$. Then, as noted after (2.7a), $\mathcal{F}_{2 g}$ can be identified with $\left[(S U(2) / T) \times\left(T^{2 g} \backslash(\pm I)^{2 g}\right)\right] / W$.

The quotient projection $\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) \rightarrow\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) / W$ is a principal W-bundle (i.e. a 2 -fold covering). The group $W=\{I, n\}$ has a right action on $S U(2) / T$ in the usual way, with n acting by $x T \mapsto x n^{-1} T$. Thus we have a corresponding fiber bundle, with fiber $S U(2) / T$, associated to the principal W-bundle $\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) \rightarrow\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) / W$.

Proposition 2.10. The quotient space $\mathcal{F}_{2 g} / S U(2)$ is a manifold and the quotient map $\mathcal{F}_{2 g} \rightarrow \mathcal{F}_{2 g} / S U(2)$ is a smooth fiber bundle isomorphic (in the smooth category) to the fiber bundle with fiber $S U(2) / T$ associated to the principal W-bundle (or covering) $\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) \rightarrow\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) / W$, where $W=\{I, n\}$ acts on $S U(2) / T$ by $x T \mapsto x T$ and $x T \mapsto x n^{-1} T$.

Proof. As we have seen before in the context of (2.6a), the map (with $G=S U(2)$)

$$
\begin{equation*}
\Phi^{1}:(G / T) \times T^{2 g} \rightarrow G^{2 g}:\left(x T, t_{1}, \ldots, t_{2 g}\right) \mapsto\left(x t_{1} x^{-1}, \ldots, x t_{2 g} x^{-1}\right) \tag{2.10a}
\end{equation*}
$$

has image $\mathcal{F}_{2 g} \cup\{ \pm I\}^{2 g}$, and induces by restriction and quotient a continuous one-to-one map

$$
\begin{equation*}
\bar{\Phi}:\left[(G / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)\right] / W \rightarrow G^{2 g} \tag{2.10b}
\end{equation*}
$$

with image $\mathcal{F}_{2 g}$, where the quotient $[\cdots] / W$ is under the right action of W specified by ($n \in W, n \neq I$)

$$
n T \cdot\left(T, t_{1}, \ldots, t_{2 g}\right)=\left(x n^{-1} T, t_{1}^{-1}, \ldots, t_{2 g}^{-1}\right)
$$

This action is free and restricts to a free action on $(G / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)$, and so the quotient $\left[(G / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)\right] / W$ is a smooth manifold, the corresponding quotient map being a 2 -fold covering. As seen in (2.7b), $\mathcal{F}_{2 g}$ is a submanifold of $G^{2 g}$ and $\bar{\Phi}$ gives a diffeomorphism onto $\mathcal{F}_{2 g}$.
The natural left action of G on G / T gives a left action of G on $(G / T) \times T^{2 g}$ (which commutes with the right action of W), and a corresponding action on the quotient space $\left[(G / T) \times\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)\right] / W$. It is readily verified that $\bar{\phi}$ is G-equivariant.

These considerations may be illustrated by the commuting diagram :

$$
\begin{array}{clll}
{[(S U(2) / T) \times} & \left.\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)\right] / W & & \stackrel{\Phi}{\rightarrow} \\
\downarrow p & \mathcal{F}_{2 g} \tag{2.10c}\\
\downarrow p & & \downarrow p^{\prime} \\
{\left[T^{2 g} \backslash\{ \pm I\}^{2 g}\right] / W} & & \overline{\bar{\Phi}} & \mathcal{F}_{2 g} / S U(2)
\end{array}
$$

where p is obtained from the projection of $(S U(2) / T) \times T^{2 g}$ on the second factor, p^{\prime} is the quotient map, and $\overline{\bar{\Phi}}$ is the induced map. Clearly $\overline{\bar{\Phi}}$ is a homeomorphism.

We observe that p is a smooth fiber bundle projection: it is the G / T-bundle associated to the principal W-bundle $T^{2 g} \backslash\{ \pm I\}^{2 g} \rightarrow\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right) / W$ by the action of W on G / T (specified by $n \cdot x T \mapsto x n^{-1} T$). As already noted, $\bar{\Phi}$ is a diffeomorphism and $\overline{\bar{\Phi}}$ is a homeomorphism. Thus the projection $\mathcal{F}_{2 g} \xrightarrow{p^{\prime}} \mathcal{F}_{2 g} / G$ is a submersion if and only if $\mathcal{F}_{2 g} / G$ is equipped with the smooth structure which makes $\overline{\bar{\Phi}}$ a diffeomorphism; and with this smooth structure, the projection $\mathcal{F}_{2 g} \rightarrow \mathcal{F}_{2 g} / G$ is a smooth fiber bundle with fiber G / T and structure group W, isomorphic (in the smooth category) to the bundle given by p.

Proof of Theorem 2.1 We can now put together all the pieces to obtain Theorem 2.1.
Recall that the moduli space \mathcal{M}^{0} of flat connections over the compact oriented genus $g(\geq 1)$ surface Σ is identified with the quotient space $K_{g}^{-1}(I) / S U(2)$. Then \mathcal{M}^{0} is the disjoint union $\mathcal{M}_{3(2 g-2)}^{0} \cup \mathcal{M}_{2 g}^{0} \cup \mathcal{M}_{0}^{0}$, where $\mathcal{M}_{3(2 g-2)}^{0}$ corresponds to the quotient $\mathcal{F}_{3(2 g-2)} / S U(2)$, the stratum $\mathcal{M}_{2 g}^{0}$ corresponds to $\mathcal{F}_{2 g} / S U(2)$, and \mathcal{M}_{0}^{0} is a set of $2^{2 g}$ points corresponding to $\{ \pm I\}^{2 g} / S U(2)$. We have already proved that $\mathcal{F}_{3(2 g-2)}$ is empty when $g=1$, while for $g \geq 2$ it is a connected $3(2 g-2)$-dimensional manifold. We have
also proved, in Proposition 2.10, that $\mathcal{F}_{g} / S U(2)$ is a connected $2 g$-dimensional manifold, as given in (2.10c).

3. The moduli spaces of flat $S O$ (3) connections

Let Σ be a compact connected oriented two-dimensional manifold of genus $g \geq 1$. Then there are two topologically distinct classes of principal $S O$ (3)-bundles over Σ, one trivial and the other non-trivial. The moduli space of flat connections on the trivial bundle will be denoted $\mathcal{M}^{0}(I)$, and the moduli space of flat connections on the non-trivial bundle will be denoted $\mathcal{M}^{0}(-I)$. The main results are:

Theorem 3.1. The moduli space $\mathcal{M}^{0}(I)$ is the union of disjoint subsets

$$
\begin{equation*}
\mathcal{M}^{0}(I)=\mathcal{M}_{3(2 g-2)}^{0}(I) \cup \mathcal{M}_{2 g}^{0}(I) \cup \mathcal{M}_{2 g-2}^{0}(I) \cup \mathcal{M}_{0}^{0}(I), \tag{3.1}
\end{equation*}
$$

where
(i) $\mathcal{M}_{3(2 g-2)}^{0}$ (I) is a connected $3(2 g-2)$-dimensional manifold (empty if and only if $g=1$),
(ii) $\mathcal{M}_{2 g}^{0}(I)$ is a connected $2 g$-dimensional manifold,
(iii) $\mathcal{M}_{2 g-2}^{0}(I)$ is empty if $g=1$, while for $g \geq 2$ it is a $(2 g-2)$-dimensional manifold with $2^{2 g}-1$ components,
(iv) $\mathcal{M}_{0}^{0}(I)$ is a finite set.

For the non-trivial bundle the corresponding result is:
Theorem 3.2. The moduli space $\mathcal{M}^{0}(-I)$ is the union of disjoint subsets:

$$
\begin{equation*}
\mathcal{M}^{0}(-I)=\mathcal{M}_{3(2 g-2)}^{0}(-I) \cup \mathcal{M}_{2 g-2}^{0}(-I) \cup \mathcal{M}_{0}^{0}(-I) \tag{3.2}
\end{equation*}
$$

where
(i) $\mathcal{M}_{3(2 g-2)}^{0}(-I)$ is a connected $3(2 g-2)$-dimensional manifold (empty if and only if $g=1$),
(ii) $\mathcal{M}_{2 g-2}^{0}(-I)$ is a $(2 g-2)$-dimensional manifold with $2^{2 g}-1$ components (empty if and only if $g=1$),
(iii) $\mathcal{M}_{0}^{0}(-I)$ is a finite set.

In this section we shall often write G for $S U(2)$, and \bar{G} for $S O(3)$. There is a standard covering map $G \rightarrow S O(3): x \mapsto \bar{x}$, whose kernel is $\{ \pm I\}$. If $\bar{y} \in S O$ (3), we will denoted by y any element in $S U(2)$ which covers \bar{y}.

The product commutator map

$$
\begin{equation*}
\tilde{K}_{g}: S O(3)^{2 g} \rightarrow G:\left(\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{g}, \bar{b}_{g}\right) \mapsto b_{g}^{-1} a_{g}^{-1} b_{g} a_{g} \ldots b_{1}^{-1} a_{1}^{-1} b_{1} a_{1} \tag{3.3}
\end{equation*}
$$

will be useful. Since the kernel of the covering map $G \rightarrow S O$ (3) is (in) the center of G, \tilde{K}_{g} is well-defined.

The moduli space $\mathcal{M}^{0}(I)$ of flat connections on the trivial bundle can be identified with quotient $\tilde{K}_{g}^{-1}(I) / S O(3)$, while the moduli space $\mathcal{M}^{0}(-I)$ of flat connections on the nontrivial bundle can be identified with $\tilde{K}_{g}^{-1}(-I) / S O(3)$:

$$
\begin{equation*}
\mathcal{M}^{0}(I) \simeq \tilde{K}_{g}^{-1}(I) / S O(3) \quad \text { and } \quad \mathcal{M}^{0}(-I) \simeq \tilde{K}_{g}^{-1}(-I) / S O(3) \tag{3.4}
\end{equation*}
$$

The strategy is again to understand the structure of $\mathcal{M}^{0}(z) \simeq \tilde{K}_{g}^{-1}(z) / S O(3)$ by separating out the subsets of $\tilde{K}_{g}^{-1}(z)$ corresponding to different isotropy groups of the $S O$ (3) action.

We are using the following decomposition:

$$
\begin{equation*}
\tilde{K}_{g}^{-1}(z)=\overline{\mathcal{F}}_{3(2 g-2)}(z) \cup \overline{\mathcal{F}}_{2 g}(z) \cup \overline{\mathcal{F}}_{2 g-2}(z) \cup \overline{\mathcal{F}}_{0}(z) \tag{3.5a}
\end{equation*}
$$

where $z= \pm I$, and
(i) $\overline{\mathcal{F}}_{3(2 g-2)}(z)$ is the subset of $\tilde{K}_{g}^{-1}(z)$ where the isotropy of the $S O(3)$-action is $\{I\}$,
(ii) $\overline{\mathcal{F}}_{2 g}(z)$ is the subset where the isotropy group is a maximal torus in $S O$ (3),
(iii) $\overline{\mathcal{F}}_{2 g-2}(z)$ is the subset where the isotropy group consists of two elements (the identity and a 180° rotation),
(iv) $\overline{\mathcal{F}}_{0}(z)$ is the remaining subset of $\tilde{K}_{g}^{-1}(z)$; as we shall see in Proposition 3.4 below, the only other possible isotropy groups are: (a) $S O$ (3), (b) the normalizer $N(K)$ of a maximal torus K of $S O$ (3), (c) a four-element group $\left\{I, n_{1}, n_{2}, n_{3}\right\}$, where $\left\{n_{1}, n_{2}, n_{3}\right\}$ are 180° rotations around orthogonal axes.
(The set $\overline{\mathcal{F}}_{0}(z)$ should not be confused with $\overline{\mathcal{F}}_{2 g-2}(z)$ or with $\overline{\mathcal{F}}_{3(2 g-2)}(z)$ for $g=1$.)
Then we decompose the moduli space as

$$
\begin{equation*}
\mathcal{M}^{0}(z)=\mathcal{M}_{3(2 g-2)}^{0}(z) \cup \mathcal{M}_{2 g}^{0}(z) \cup \mathcal{M}_{2 g-2}^{0}(z) \cup \mathcal{M}_{0}^{0}(z) \tag{3.5b}
\end{equation*}
$$

where $\mathcal{M}_{3(2 g-2)}^{0}(z)$ is the subset corresponding to $\overline{\mathcal{F}}_{3(2 g-2)}(z) / S O(3)$, and similarly for $\mathcal{M}_{2 g}^{0}(z), \mathcal{M}_{2 g-2}^{0}(z)$, and $\mathcal{M}_{0}^{0}(z)$.

3.1. The isotropy groups of the $S O$ (3)-action

We start with a few preliminary observations. Some of these may be verified by taking the covering map $S U(2) \rightarrow S O(3)$ to be given by means of the adjoint representation of $S U(2)$ on its Lie algebra \underline{g}; the vector space \underline{g} can be identified with \mathbf{R}^{3} using a basis which is orthonormal with respect to an Ad-invariant metric on \underline{g}.

Observations 3.3.

(i) A maximal torus in $S O$ (3) corresponds to rotations around a fixed axis in \mathbf{R}^{3}.
(ii) Elements $a, b \in S O$ (3) satisfy $\tilde{b}^{-1} \tilde{a} \tilde{b}=-\tilde{a}$, where $\tilde{a}, \tilde{b} \in S U$ (2) cover $a, b \in S O$ (3), if and only if a and b are 180° rotations around orthogonal axes (this may be verified by considering a diagonal form for \tilde{a}, for instance). Thus an element $a \in S O$ (3) commutes with $b \in S O(3)$ if and only if either a and b lie in the same maximal torus or they are 180° rotations around orthogonal axes.
(iii) Let $a \in S O$ (3), \bar{T} a maximal torus in $S O$ (3) and suppose $a b a^{-1} \in \bar{T}$ for some $b \in \bar{T} \backslash\{I\}$. Considering covering elements $\tilde{a}, \tilde{b} \in S U(2)$, with \tilde{b} taken diagonal by suitably conjugating \bar{T}, it follows by matrix computation that $a \in N(\bar{T})$ (the normalizer of \bar{T}) and $a b a^{-1}=b^{ \pm 1}$. Conversely, if $a \in N(\bar{T}) \backslash \bar{T}$ and $b \in \bar{T}$ then $a b a^{-1}=b^{-1}$; this may also be verified by passing to $S U(2)$.
(iv) By (iii) and (ii), $N(\bar{T}) \backslash \bar{T}$ consists of all the 180° rotations about axes orthogonal to the axis for \bar{T}.

Proposition 3.4. Let $H_{x} \subset S O(3)$ be the isotropy group at a point $x=\left(x_{1}, \ldots, x_{r}\right) \in$ $S O(3)^{r}$ of the conjugation action of $S O(3)$ on $S O(3)^{r}, r \geq 1$.
(i) $H_{x}=S O$ (3) if and only if $x=(I, \ldots, I)$, i.e. $\left\{x_{1}, \ldots, x_{r}\right\}=\{I\}$.
(ii) $H_{x}=N(K)=K \cup n K$, the normalizer of a maximal torus K in $S O$ (3) (thus $n \in N(K) \backslash K$), if and only if $\left\{x_{1}, \ldots, x_{r}\right\} \subset\{I, \tau\}$ for some 180° rotation τ (the 180° rotation belonging to \bar{T}) and $\left\{x_{1}, \ldots, x_{r}\right\} \neq\{I\}$.
(iii) $H_{x}=\left\{I, n_{1}, n_{2}, n_{3}\right\}$, where n_{1}, n_{2}, n_{3} are 180° rotations around three orthogonal axes, if and only if: $\left\{n_{1}, n_{2}\right\} \subset\left\{x_{1}, \ldots, x_{r}\right\} \subset\left\{I, n_{1}, n_{2}, n_{3}\right\}$ (i.e. $\left\{x_{1}, \ldots, x_{r}\right\} \subset$ $\left\{I, n_{1}, n_{2}, n_{3}\right\}$ but there is no 180° rotation τ such that $\left.\left\{x_{1}, \ldots, x_{r}\right\} \subset\{I, \tau\}\right)$.
(iv) $H_{x}=K$, a maximal torus in $S O$ (3), if and only if $x_{1}, \ldots, x_{r} \in K$ and there is no 180° rotation τ such that $\left\{x_{1}, \ldots, x_{r}\right\} \subset\{I, \tau\}$.
(v) $H_{x}=\{I, \tau\}$, for some 180° rotation n, if and only if: there is a maximal torus K (containing τ) and 180° rotations n_{1}, \ldots, n_{j}, with axes orthogonal to that for K, such that $\left\{x_{1}, \ldots, x_{r}\right\} \subset K \cup\left\{n_{1}, \ldots, n_{j}\right\}$ (i.e., $\left.\left\{x_{1}, \ldots, x_{r}\right\} \subset N(K)\right)$ but x does not satisfy the conditions of (i)-(iv) above.
(vi) $H_{x}=\{I\}$ if and only if the conditions of (i)-(v) do not hold, i.e. there is no maximal torus K such that $\left\{x_{1}, \ldots, x_{r}\right\} \subset N(K)$.

Proof.
(i) Apparent.
(ii) Suppose $\{I\} \neq\left\{x_{1}, \ldots, x_{r}\right\} \subset\{I, \tau\}$, for some 180° rotation τ. Then $H_{x}=\{y \in$ $S O(3): y \tau y^{-1}=\tau$; by Observations 3.3 (ii) and (iv), this set equals $N(K)$, the normalizer of the maximal torus K containing τ. Conversely, suppose $H_{x}=N(K)$. Then each x_{i} commutes with every element of K, and so each x_{i} must $\in K$. Moreover, choosing $n \in N(K) \backslash K$, we have $x_{i}=n x_{i} n^{-1}=x_{i}^{-1}$, and so $x_{i}^{2}=I$. Since $H_{x} \neq$ $S O(3), x$ cannot be (I, \ldots, I); thus $x=\left(x_{1}, \ldots, x_{r}\right)$, with $\{I\} \neq\left\{x_{1}, \ldots, x_{r}\right\} \subset$ $\{I, \tau\}$.
(iv) is proved by arguments similar to those used for (ii).
(iii) Suppose that there are 180° rotations n_{1}, n_{2} and n_{3}, around orthogonal axes, such that $\left\{n_{1}, n_{2}\right\} \subset\left\{x_{1}, \ldots, x_{r}\right\} \subset\left\{I, n_{1}, n_{2}, n_{3}\right\}$. If $y \in H_{x}$ then y commutes with n_{1} and n_{2} and hence, by Observation 3.3(ii), must belong to $\left\{I, n_{1}, n_{2}, n_{3}\right\}$. It also follows from Observation 3.3(ii) that $\left\{I, n_{1}, n_{2}, n_{3}\right\} \subset H_{x}$; thus $H_{x}=\left\{I, n_{1}, n_{2}, n_{3}\right\}$. Conversely, suppose $H_{x}=\left\{I, n_{1}, n_{2}, n_{3}\right\}$, the n_{i} 's being 180° rotations around orthogonal axes. Then, by Observation 3.3(ii), each x_{i} must either be in $\left\{I, n_{1}, n_{2}, n_{3}\right\}$ or be a 180° rotation with axis orthogonal to those of n_{1}, n_{2} and n_{3}. The latter being impossible,
we conclude that $\left\{x_{1}, \ldots, x_{r}\right\} \subset\left\{I, n_{1}, n_{2}, n_{3}\right\}$. Now if $\left\{x_{1}, \ldots, x_{r}\right\}$ were a subset of $\left\{I, n_{1}\right\}$ then H_{x} would, by (i) and (ii), not be equal to $\left\{I, n_{1}, n_{2}, n_{3}\right\}$. Thus H_{x} must contain at least two 180° rotations; taking these to be n_{1} and n_{2}, we conclude that $\left\{n_{1}, n_{2}\right\} \subset\left\{x_{1}, \ldots, x_{r}\right\} \subset\left\{I, n_{1}, n_{2}, n_{3}\right\}$.
(v) Suppose $H_{x}=\{I, \tau\}$, where τ is a 180° rotation. Since, by Observations 3.3, the set of elements which commute with τ equals $N(K)$, the normalizer of the maximal torus K containing τ, it follows that $\left\{x_{1}, \ldots, x_{r}\right\} \subset N(K)$; since H_{x} contains two elements, the conditions for (i)-(iv) cannot hold.

Conversely, suppose that $\left\{x_{1}, \ldots, x_{r}\right\} \subset N(K)$, where $N(K)$ is the normalizer of a maximal torus K, and the conditions for (i)-(iv) do not hold. Then $\{I, \tau\} \subset H_{x}$ because τ commutes with every element of $N(K)$. Since (i)-(iii) do not apply, there is at least one $x_{j} \in N(K) \backslash K$. If there is only one $x_{j} \in N(K) \backslash K$ then, since (ii) and (iv) do not apply, there is some $i \in\{1, \ldots, r\}$ with $x_{i} \in K$ and $x_{i}^{2} \neq I$; in this case $H_{x} \subset Z\left(x_{i}\right) \cap Z\left(x_{j}\right)=\{I, \tau\}$, and so $H_{x}=\{I, \tau\}$. Now suppose there exist distinct $x_{j}, x_{k} \in N(K) \backslash K$. If x_{j} and x_{k} have orthogonal axes then, since (ii) and (iv) do not apply, there is some $x_{i} \in K$ with $x_{i}^{2} \neq I$ and so, as before, $H_{x}=\{I, \tau\}$. Finally, if $x_{j}, x_{k} \in N(K) \backslash K$ have non-orthogonal axes then $H_{x} \subset Z\left(x_{j}\right) \cap Z\left(x_{k}\right)=\{I, \tau\}$, and so again $H_{x}=\{I, \tau\}$.
(vi) Suppose $\left\{x_{1}, \ldots, x_{r}\right\} \subset N(K)$ for some maximal torus K. Then, by Observation 3.3(ii) and (iv), the 180° rotation $\tau \in K$ commutes with each x_{i} and so H_{x} cannot be $\{I\}$. Conversely, if $H_{x} \neq\{I\}$ then, choosing $h \in H_{x} \backslash\{I\}$, and letting K be the maximal torus containing h, Observation 3.3 shows that $N(K)$ is the set of all elements of $S O$ (3) which commute with h, and so $\left\{x_{1}, \ldots, x_{r}\right\} \subset N(K)$.

3.2. The structure of $\overline{\mathcal{F}}_{3(2 g-2)}(\pm I)$

Recall that $\overline{\mathcal{F}}_{3(2 g-2)}(z)$ is the set of all points in $\tilde{K}_{g}^{-1}(z)$ where the isotropy of the $S O(3)-$ action is $\{I\}$.

Proposition 3.5. If $g \geq 2$ then $\overline{\mathcal{F}}_{3(2 g-2)}(I)$ is non-empty and is a connected $3(2 g-1)$ dimensional submanifold of $\operatorname{SO}(3)^{2 g}$. If $g=1$ then $\overline{\mathcal{F}}_{3(2 g-2)}(I)$ is empty.

Proof. Recall that $\mathcal{F}_{3(2 g-2)}$, the subset of $K_{g}^{-1}(I) \subset S U(2)^{2 g}$ where the conjugation action of $S U(2)$ has isotropy group $\{ \pm I\}$, is the part of the level set $K_{g}^{-1}(I)$ which lies in the set of non-critical points of K_{g}. If $\bar{p} \in \overline{\mathcal{F}}_{3(2 g-2)}(I)$ then, by Lemma $2.2, \tilde{K}_{g}$ is not critical at \bar{p} and so, since the covering $S U(2) \rightarrow S O(3)$ is a local diffeomorphism, K_{g} is not critical at p, and therefore $p \in \mathcal{F}_{3(2 g-2)}$. Thus $\overline{\mathcal{F}}_{3(2 g-2)}(I)$ is a subset of $\overline{\mathcal{F}}_{3(2 g-2)}$, the projection of $\mathcal{F}_{3(2 g-2)}$ on $S O(3)^{2 g}$. If $g=1$ then $\mathcal{F}_{3(2 g-2)}=\emptyset$ and hence so is $\mathcal{F}_{3(2 g-2)}(I)$.

We proceed with the case $g \geq 2$.
Pick $a, b \in S U(2)$ such that: (i) a, b do not commute, (ii) $a^{2}, b^{2} \notin\{ \pm I\}$; for example:

$$
a=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} t} & 0 \\
0 & \mathrm{e}^{-\mathrm{i} t}
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

where $t=\pi / 4$. By Lemma 2.4(i), we can choose $c, d \in S U(2)$ satisfying $d^{-1} c^{-1} d c=$ $\left(b^{-1} a^{-1} b a\right)^{-1}$. Then, recalling that $g \geq 2$, we have $(\bar{a}, \bar{b}, \bar{c}, \bar{d}, I, I, \ldots, I) \in \tilde{K}_{g}^{-1}(I)$ and $Z(\bar{a}) \cap Z(\bar{b}) \cap Z(\bar{c}) \cap Z(\bar{d})=\{I\} ;$ for if $x \in S U(2)$ satisfies $x a x^{-1}= \pm a$ and $x b x^{-1}= \pm b$ then, since $a^{2} \neq \pm I$ and $b^{2} \neq \pm I$, it follows (by Observation 3.3(ii)) that $x a x^{-1}=a$ and $x b x^{-1}=b$, and thus, since $b^{-1} a^{-1} b a \neq I, x$ must be $\pm I$, and so $\bar{x}=I(\in S O(3))$. Thus, $(\bar{a}, \bar{b}, \bar{c}, \bar{d}, I, I, \ldots, I) \in \overline{\mathcal{F}}_{3(2 g-2)}(I)$. So, if $g \geq 2$ then $\overline{\mathcal{F}}_{3(2 g-2)}(I) \neq \emptyset$.

Let \mathcal{W} be the set of points of $S O(3)^{2 g}$ at which the isotropy group of the $S O(3)$ conjugation action is $\{I\}$. It is readily seen that \mathcal{W} is non-empty. Let us check that it is open. Consider a sequence p_{1}, p_{2}, \ldots of points in \mathcal{W}^{c} converging to some $p \in S O(3)^{2 g}$. From Proposition 3.4 we see that for any $q \in S O(3)^{2 g}$, the isotropy group H_{q} is either $\{I\}$ or contains a 180° rotation. Thus each isotropy group $H_{p_{j}}$ contains a 180° rotation x_{j}. After passing to a subsequence if necessary, we take x_{j} converging to a point x, and have

$$
x p x^{-1}=\lim _{j \rightarrow \infty} x_{j} p_{j} x_{j}^{-1}=\lim _{j \rightarrow \infty} p_{j}=p
$$

i.e. $x \in H_{p}$. Since each x_{j} is a 180° rotation, so is x. Thus the limit point p does not belong to \mathcal{W}. Thus \mathcal{W} is open. In fact, the complement of \mathcal{W}, being the subset of $S O(3)^{2 g}$ covered by Proposition 3.4(i)-(iv), consists of the union of a finite number of submanifolds of dimension $\leq 2 g+3$ and so is \mathcal{W} a dense open subset of $S O(3)^{2 g}$. (Actually, a general result in the theory of transformation groups implies that \mathcal{W} is a dense open subset of $S O(3)^{2 g}$.) By Lemma 2.2, \tilde{K}_{g} has no critical points in \mathcal{W}; therefore, $\overline{\mathcal{F}}_{3(2 g-2)}(I)$, being the level set $\left(\tilde{K}_{g} \mid \mathcal{W}\right)^{-1}(I)$, and being non-empty if $g \geq 2$, is, in that case, a $3(2 g-1)$ dimensional submanifold of $S O(3)^{2 g}$.

As we have already noted, $\overline{\mathcal{F}}_{3(2 g-2)}(I) \subset \overline{\mathcal{F}}_{3(2 g-2)}$. Thus $\overline{\mathcal{F}}_{3(2 g-2)}(I)$ is the subset of $\overline{\mathcal{F}}_{3(2 g-2)}$ consisting of the points where the $S O$ (3)-conjugation-action is free. Let U_{nc}^{\prime} be the subset of $S O(3)^{2 g}$ consisting of all non-critical points of \tilde{K}_{g}; then $U_{\text {nc }}^{\prime}$ is open and $\overline{\mathcal{F}}_{3(2 g-2)}=\left(\tilde{K}_{g} \mid U_{\mathrm{nc}}^{\prime}\right)^{-1}(1)$. Thus, for $g \geq 2, \overline{\mathcal{F}}_{3(2 g-2)}$ is a smooth $3(2 g-1)$-dimensional submanifold of $S O(3)^{2 g}$. Since $\mathcal{F}_{3(2 g-2)}$ is connected, so is its continuous image $\overline{\mathcal{F}}_{3(2 g-2)}$. The conjugation action of $S O(3)$ on $S O(3)^{2 g}$ restricts to a smooth action on the invariant submanifold $\overline{\mathcal{F}}_{3(2 g-2)}$. Since \tilde{K}_{g} is non-critical at each point of $\overline{\mathcal{F}}_{3(2 g-2)}$, it follows from Lemma 2.2 that the isotropy group at every point in $\overline{\mathcal{F}}_{3(2 g-2)}$ is discrete. By Proposition 3.4 , we know that this discrete isotropy group is either $\{I\}$, or a two-element group or a four-element group. As will be proven later in Propositions 3.13 and 3.22, the subset of $\overline{\mathcal{F}}_{3(2 g-2)}$ consisting of points where the isotropy group is a two-element group or a fourelement group is the union of a finite number of submanifolds each of dimension $\leq 2 g+2$. Since these manifolds have codimension $\geq 4 g-5$, and since $\overline{\mathcal{F}}_{3(2 g-2)}$ is connected, it follows that, for $g \geq 2, \overline{\mathcal{F}}_{3(2 g-2)}(I)$ is connected.

A general result in the theory of transformation groups says that the set of points of minimal isotropy is a dense open subset of the connected manifold on which the group acts, and the corresponding projection onto the quotient space is connected. In our setting, this also implies that $\overline{\mathcal{F}}_{3(2 g-2)}(I) / S O(3)$ is connected.

Proposition 3.6. If $g \geq 2$ then $\overline{\mathcal{F}}_{3(2 g-2)}(-I)$ is non-empty and is a smooth connected manifold of dimension $3(2 g-1)$. If $g=1$ then $\overline{\mathcal{F}}_{3(2 g-2)}(-I)$ is empty.

Proof. If $g=1$, and $(a, b) \in \tilde{K}_{g}^{-1}(-I)$, then, by Observation 3.3(ii), a and b are 180° rotations around orthogonal axes. In this case, the isotropy group at (a, b) is, according to Proposition 3.4 (iii), a four-element group. Thus at no point on $\tilde{K}_{1}^{-1}(-I)$ does $S O(3)$ act freely, i.e. $\overline{\mathcal{F}}_{3(2 g-2)}(-I)$ is empty if $g=1$.

Now suppose $g \geq 2$. Pick $a, b \in S U(2)$ such that: (i) a, b do not commute, (ii) a^{2} and b^{2} are not in $\{ \pm I\}$. Pick (by Lemma 2.4(i)) $c, d \in S U(2)$ such that $d^{-1} c^{-1} d c=$ $-\left(b^{-1} a^{-1} b a\right)^{-1}$. Then $(\bar{a}, \bar{b}, \bar{c}, \bar{d}, \ldots) \in \tilde{K}_{g}^{-1}(-I)$ and, as in the proof of Proposition 3.5, the isotropy group at $(\bar{a}, \bar{b}, \bar{c}, \bar{d}, I, I, \ldots, I)$ is $\{I\}$. Thus $(\bar{a}, \bar{b}, \bar{c}, \bar{d}, I, I, \ldots, I) \in$ $\overline{\mathcal{F}}_{3(2 g-2)}(-I)$.

We work with $g \geq 2$. By Lemmas 2.4(ii) and 2.2, $-I$ is a regular value of \tilde{K}_{g}, and so $\tilde{K}_{g}^{-1}(-I)$ is a smooth $3(2 g-1)$-dimensional submanifold of $S O(3)^{2 g}$. As in the proof of Proposition $3.5, \overline{\mathcal{F}}_{3(2 g-2)}(-I)$ is an open subset of $\tilde{K}_{g}^{-1}(-I)$ and so is a $3(2 g-1)$ dimensional submanifold of $S O(3)^{2 g}$.

From Proposition 2.7, the manifold $K_{g}^{-1}(-I)$ is connected, and hence so is the projection $\tilde{K}_{g}^{-1}(-I)$. It will be proven in (3.6) and Proposition 3.22 that the subset of $\tilde{K}_{g}^{-1}(-I)$ consisting of all points where the $S O$ (3)-conjugation action is not free is the union of a finite number of submanifolds each of dimension $\leq 2 g+1$, i.e. of codimension $\geq 4 g-4 \geq 4$ in $\tilde{K}_{g}^{-1}(-I)$. Thus the subset of $\tilde{K}_{g}^{-1}(-I)$ where the $S O(3)$-action is free is connected, i.e. $\overline{\mathcal{F}}_{3(2 g-2)}(-I)$ is connected.

We turn to the quotients.
Theorem 3.7. Suppose $g \geq 2$, and $z= \pm I$. Then $\overline{\mathcal{F}}_{3(2 g-2)}(z) / S O(3)$ is a connected smooth manifold of dimension $3(2 g-2)$, and the projection map

$$
\overline{\mathcal{F}}_{3(2 g-2)}(z) \rightarrow \overline{\mathcal{F}}_{3(2 g-2)}(z) / S O(3)
$$

is a smooth principal $S O$ (3)-bundle.
Proof. Since $S O(3)$ acts freely on $\overline{\mathcal{F}}_{3(2 g-2)}(z)$, the result follows from the general fact quoted in Proposition 4.2, and the connectivity proved in Propositions 3.5 and 3.6.

3.3. The structure of $\overline{\mathcal{F}}_{2 g}(\pm I)$

Recall that $\overline{\mathcal{F}}_{2 g}(z)$ is the subset of $\tilde{K}_{g}^{-1}(z)$ where the isotropy group of the $S O(3)$ action is a maximal torus in $S O(3)$. According to Proposition 3.4 (iv) if a point $p=$ $\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right) \in \overline{\mathcal{F}}_{2 g}(z)$ then, there are covering elements \tilde{a}_{j} and \tilde{b}_{j} all lying in one maximal torus in $S U(2)$, and so $\tilde{K}_{g}(p)=I$. Thus

$$
\begin{equation*}
\overline{\mathcal{F}}_{2 g}(-I)=\emptyset \tag{3.6}
\end{equation*}
$$

Proposition 3.8. $\overline{\mathcal{F}}_{2 g}(I)$ is a connected smooth submanifold of $S O(3)^{2 g}$ of dimension $2 g+2$.

Proof. By definition, $\overline{\mathcal{F}}_{2 g}(I)$ consists of those points in $\tilde{K}_{g}^{-1}(I)$ where the isotropy group is a maximal torus in $S O(3)$. Let \bar{T} be a maximal torus in $S O$ (3), and τ the 180° rotation belonging to \bar{T}. For notational brevity, let us write \bar{G} for $S O$ (3). Consider the map

$$
\begin{equation*}
(\bar{G} / \bar{T}) \times \bar{T}^{2 g} \rightarrow S O(3)^{2 g}:\left(x \bar{T}, t_{1}, \ldots, t_{2 g}\right) \mapsto\left(x t_{1} x^{-1}, \ldots, x t_{2 g} x^{-1}\right) \tag{3.7a}
\end{equation*}
$$

By Proposition 3.4(iv), the restriction

$$
\begin{align*}
& \Phi_{S O(3)}:(\bar{G} / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right) \\
& \quad \rightarrow S O(3)^{2 g}:\left(x \bar{T}, t_{1}, \ldots, t_{2 g}\right) \mapsto\left(x t_{1} x^{-1}, \ldots, x t_{2 g} x^{-1}\right) \tag{3.7b}
\end{align*}
$$

has image $\overline{\mathcal{F}}_{2 g}(I)$ (see the argument preceding (3.6)). It is readily verified (as in (2.6b)) by computation of the derivative $\mathrm{d} \Phi_{\bar{G}}$, that $\Phi_{S O(3)}$ is an immersion.

Let W be the Weyl group of \bar{T}, i.e. $W=N(\bar{T}) / \bar{T} \simeq\{I, n\}$, where n is a 180° rotation around an axis orthogonal to the axis for \bar{T} (this follows from Observation 3.3). Examining $\Phi_{S O(3)}$, we see that it induces a continuous one-to-one map

$$
\begin{equation*}
\bar{\Phi}_{S O(3)}:\left[(\bar{G} / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right)\right] / W \rightarrow S O(3)^{2 g} \tag{3.7c}
\end{equation*}
$$

where the quotient $[\cdots] / W$ is under the action of W on $(S O(3) / \bar{T}) \times \bar{T}^{2 g}$ specified by

$$
n \bar{T} \cdot\left(x \bar{T}, t_{1}, \ldots, t_{2 g}\right)=\left(x n^{-1} T, t_{1}^{-1}, \ldots, t_{2 g}^{-1}\right)
$$

This action is free and restricts to a free action on $(S O(3) / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right)$, and so the quotient $\left[(S O(3) / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right)\right] / W$ is a smooth manifold, the corresponding quotient map being a 2 -fold covering. The image of $\bar{\Phi}_{S O(3)}$ is $\overline{\mathcal{F}}_{2 g}(I)$.

Since the map in (3.7a) takes closed sets to closed sets, the map $\bar{\Phi}_{S_{(3)}}$ takes closed sets to (relatively) closed subsets of $\overline{\mathcal{F}}_{2 g}(I)$. Thus $\bar{\Phi}_{S O(3)}$ gives a homeomorphism onto $\overline{\mathcal{F}}_{2 g}(I)$, taken as a subspace of $S O(3)^{2 g}$. Since $\Phi_{S O(3)}$ is an immersion, so is $\bar{\Phi}_{S O(3)}$. Thus

$$
\begin{equation*}
\overline{\mathcal{F}}_{2 g}(I) \text { is a submanifold of } S O(3)^{2 g} \tag{3.8a}
\end{equation*}
$$

and $\bar{\Phi}_{S O(3)}$ gives a diffeomorphism onto $\overline{\mathcal{F}}_{2 g}(I)$. In particular,

$$
\begin{equation*}
\operatorname{dim} \overline{\mathcal{F}}_{2 g}(I)=2 g+2 \tag{3.8b}
\end{equation*}
$$

Theorem 3.9. The quotient space $\overline{\mathcal{F}}_{2 g}(I) / S O(3)$ is a connected smooth manifold of dimension $2 g$. The quotient map $\overline{\mathcal{F}}_{2 g}(I) \rightarrow \overline{\mathcal{F}}_{2 g}(I) / S O(3)$ specifies a smooth fiber bundle isomorphic to a fiber bundle with fiber the sphere S^{2} associated to a principal W-bundle over $\overline{\mathcal{F}}_{2 g}(I) / S O(3)$, where W is the two-element group acting on S^{2} by $x \mapsto-x$.

Proof. As we have seen above, the map

$$
\begin{align*}
(S O(3) / \bar{T}) \times \bar{T}^{2 g} & \rightarrow S O(3)^{2 g}:\left(x T, t_{1}, \ldots, t_{2 g}\right) \\
& \mapsto\left(x t_{1} x^{-1}, \ldots, x t_{2 g} x^{-1}\right) \tag{3.9a}
\end{align*}
$$

induces by restriction and quotient a diffeomorphism

$$
\begin{equation*}
\bar{\Phi}:\left[(S O(3) / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right)\right] / W \rightarrow \overline{\mathcal{F}}_{2 g}(I) \tag{3.9b}
\end{equation*}
$$

where the quotient $[\cdots] / W$ is under the right action of W specified by ($n \in W, n \neq I$)

$$
\begin{equation*}
n T \cdot\left(x T, t_{1}, \ldots, t_{2 g}\right)=\left(x n^{-1} T, t_{1}^{-1}, \ldots, t_{2 g}^{-1}\right) \tag{3.9c}
\end{equation*}
$$

The natural left action of \bar{G} on $S O(3) / \bar{T}$ gives a left action of $S O(3)$ on $(S O(3) / \bar{T}) \times \bar{T}^{2 g}$ (which commutes with the right action of W), and a corresponding action on the quotient space $\left[(S O(3) / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right)\right] / W$. It is readily verified that $\bar{\Phi}$ is $S O$ (3)-equivariant. We have then the commuting diagram

$$
\begin{array}{ccc}
{\left[(S O(3) / \bar{T}) \times\left(\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right)\right] / W} & \xrightarrow{\Phi} & \overline{\mathcal{F}}_{2 g}(I) \\
\downarrow p & & \downarrow p^{\prime} \tag{3.9d}\\
{\left[\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}\right] / W} & \xrightarrow{\Phi} & \overline{\mathcal{F}}_{2 g}(I) / S O(3)
\end{array}
$$

where p is obtained from the projection of ($S O(3) / \bar{T}) \times \bar{T}^{2 g}$ on the second factor, p^{\prime} is the quotient map, and $\overline{\bar{\Phi}}$ is the induced map. The induced map $\overline{\bar{\Phi}}$ is one-to-one, and is therefore a homeomorphism.

We observe that p is a smooth fiber bundle projection: it is the $S O(3) / \bar{T}$-bundle associated to the principal W-bundle $\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g} \rightarrow\left(\bar{T}^{2 g} \backslash\{ \pm I\}^{2 g}\right) / W$ by the action of W on $S O(3) / \bar{T}$ (specified by $n \cdot x \bar{T} \mapsto x n^{-1} \bar{T}$). As already noted, $\bar{\Phi}$ is a diffeomorphism and $\overline{\bar{\Phi}}$ is a homeomorphism. Thus the projection $\overline{\mathcal{F}}_{2 g}(I) \xrightarrow{p^{\prime}} \overline{\mathcal{F}}_{2 g}(I) / S O(3)$ is a submersion if and only if $\overline{\mathcal{F}}_{2 g}(I) / S O(3)$ is equipped with the smooth structure which makes $\overline{\bar{\Phi}}$ a diffeomorphism; and with this smooth structure, the projection $\overline{\mathcal{F}}_{2 g}(I) \rightarrow \overline{\mathcal{F}}_{2 g}(I) / S O(3)$ is a smooth fiber bundle with fiber $S O(3) / \bar{T} \simeq S^{2}$ and structure group W, isomorphic (in the smooth category) to the bundle given by p.

3.4. The set of points in $S O(3)^{2 g}$ where the isotropy has two elements

We have

$$
\mathcal{M}_{2 g-2}^{0}(z) \stackrel{\text { def }}{=} \overline{\mathcal{F}}_{2 g-2}(z) / S O(3)
$$

where $\overline{\mathcal{F}}_{2 g}{ }_{2}(z)$ is the set of all points in $\tilde{K}_{g}^{-1}(z)$ where the isotropy group of the $S O(3)$ conjugation action is a two-element group.

Suppose $g=1$. Then, by Observation 3.3(ii), if $(a, b) \in \tilde{K}_{g}^{1}(\pm I)$ then either a and b lie in the same maximal torus or they are 180° rotations around orthogonal axes. In either case, the isotropy group is not a two-element group (this by Proposition 3.4(i)-(iv)). Thus $\overline{\mathcal{F}}_{2 g-2}(\pm I)$ is empty if $g=1$.

We shall work now with $g \geq 2$.
Our immediate objective is to understand the subset of $S O(3)^{2 g}$ consisting of points where the isotropy group has two elements.

Proposition 3.10. Let

$$
F \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\text { the subset of } S O(3)^{2 g} \text { consisting of all points } \tag{3.10}\\
\text { where the isotropy group has two elements. }
\end{array}\right.
$$

Then
(a) F is a $(2 g+2)$-dimensional submanifold of $S O(3)^{2 g}$.
(b) The quotient map $F \rightarrow F / S O(3)$ has the structure of a fiber bundle, with fiber $S O(3) /\{I, \tau\}$, where τ is a 180° rotation, and structure group $N(\bar{T}) /\{I, \tau\}$, where $N(\bar{T})$ is the normalizer of the maximal torus \bar{T} containing τ.

We will break up the proof of this result into a number of lemmas.
We work with a fixed maximal torus \bar{T} in $S O$ (3). Let τ be the 180° rotation belonging to \bar{T}, and fix any $n \in N(\bar{T}) \backslash \bar{T}$, i.e. n is a 180° rotation with axis perpendicular to that of \bar{T}.

The conjugation action $S O(3) \times S O(3)^{2 g} \rightarrow S O(3)^{2 g}$ induces, by restriction, a smooth map

$$
\begin{equation*}
\Psi: S O(3) \times N(\bar{T})^{2 g} \rightarrow S O(3)^{2 g}:(x, p) \mapsto x p x^{-1} \tag{3.11a}
\end{equation*}
$$

We are interested in this map because Proposition 3.4(v) guarantees that the image of Ψ contains the subset of $S O(3)^{2 g}$ where the isotropy group has two elements.

The map Ψ is invariant under the following action of $N(\bar{T})$ on $S O(3) \times N(\bar{T})^{2 g}$:

$$
\begin{equation*}
y \cdot(x, p) \mapsto\left(x y^{-1}, y p y^{-1}\right), \quad \text { for } y \in N(\bar{T}) . \tag{3.11b}
\end{equation*}
$$

Let B denote the subset of $N(\bar{T})^{2 g}$ consisting of all points where the isotropy group is not a two-element group. Proposition 3.4 yields the following explicit description of the set B :

$$
\begin{equation*}
B=\bar{T}^{2 g} \cup B^{\prime} \tag{3.11c}
\end{equation*}
$$

where

$$
B^{\prime}=\left\{\begin{array}{c}
\left(x_{j}\right) \in N(\bar{T})^{2 g}: \text { if } x_{j} \in \bar{T} \text { then } x_{j} \in\{I, \tau\} ; \text { if } x_{j} \in N(\bar{T}) \backslash \bar{T} \text { then } \tag{3.11d}\\
x_{j} \in\{y n, y \tau n\} \text { for some } y \in \bar{T} \text { independent of } j
\end{array}\right\}
$$

The set B^{\prime} is clearly contained in the union of $\{I, \tau\}^{2 g}$ with a finite number of diffeomorphic images of \bar{T}. So B is a closed subset of $N(\bar{T})^{2 g}$. Thus, $N(\bar{T})^{2 g} \backslash B$ is a $2 g$-dimensional manifold, with $2^{2 g}-1$ components.

Lemma 3.11. Two points in $S O(3) \times\left[N(\bar{T})^{2 g} \backslash B\right]$ are on the same $N(\bar{T})$-orbit if and only if they have the same image under Ψ.

Proof. Since Ψ is invariant under the action of $N(\bar{T})$, the 'only if' part is clear.
For the 'if' part, suppose $\Psi(x, p)=\Psi(y, q)$, where $x, y \in N(\bar{T})^{2 g} \backslash B$; i.e.

$$
x p x^{-1}=y q y^{-1}
$$

Then

$$
w p w^{-1}=q
$$

where $w=y^{-1} x$. It will suffice to show that w is in $N(\bar{T})$.
If some component p_{j} of p belongs to $\bar{T} \backslash\{1, \tau\}$, then $w p_{j} w^{-1}=q_{j} \in N(\bar{T})$ but since ($\left.w p_{j} w^{-1}\right)^{2} \neq I$ (otherwise p_{j} would be τ), $w p_{j} w^{-1}$ must be in \bar{T} and so, by Observation 3.3(iii), $w \in N(\bar{T})$ (and therefore, $q_{j}=p_{j}^{ \pm 1} \in \bar{T}$). The same argument works if $q_{j} \in$ $\bar{T} \backslash\{1, \tau\}$.

So suppose now that if either p_{j} or q_{j} is in \bar{T} then $p_{j}, q_{j} \in\{I, \tau\}$ (i.e. either $p_{j}, q_{j} \in$ $N(\bar{T}) \backslash \bar{T}$ or $p_{j}, q_{j} \in\{I, \tau\}$. Now consider a component $p_{j_{1}} \in N(\bar{T}) \backslash \bar{T}$. By conjugating p by an appropriate element of \bar{T} (and multiplying x, or w, on the right by that element), we will assume that $p_{j_{1}}=n$. Consider another component $p_{j_{2}} \in N(\bar{T}) \backslash \bar{T}, p_{j_{2}} \neq p_{j_{1}}$. Since $w p_{j_{1}} w^{-1}=q_{j_{1}} \in N(\bar{T}) \backslash \bar{T}$, we have $w n w^{-1}=t n, t \in \bar{T}$. Next, $w p_{j_{2}} w^{-1}=q_{j_{2}}$ implies $w s n w^{-1}=r n$, for some $s \in \bar{T} \backslash\{I\}$ and $r \in \bar{T}$. So $r n=w s n w^{-1}=w s w^{-1} t n$, and so $w s w^{-1}=r t^{-1} \in \bar{T}$. Hence $w \in N(\bar{T})$.

The action of $N(\bar{T})$ on $S O(3) \times N(\bar{T})^{2 g}$ is free and so the quotient is a smooth manifold and Ψ induces a smooth map

$$
\begin{equation*}
\left[S O(3) \times N(\bar{T})^{2 g}\right] / N(\bar{T}) \rightarrow S O(3)^{2 g} \tag{3.12a}
\end{equation*}
$$

Let $\bar{\Psi}$ denote the restriction of the map (3.12a) to the subset $S O(3) \times\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$. According to Lemma 3.11, the map $\bar{\Psi}$ is one-to-one.

Lemma 3.12. The map

$$
\bar{\Psi}:\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T}) \rightarrow S O(3)^{2 g}
$$

is an immersion.
Proof. Let $(x, p) \in S O(3) \times N(\bar{T})^{2 g}$, and X be a vector in the Lie algebra of $S O(3)$, and $P \in L(\bar{T})^{2 g}$. Thus $(x X, p P)$ is a typical element of $T_{(x, p)}\left[S O(3) \times N(\bar{T})^{2 g}\right]$. Recall that $\Psi(x, p)=x p x^{-1}$. Writing $P=\left(P_{j}\right)_{j}$, we have

$$
\begin{equation*}
\mathrm{d} \Psi(x X, p P)=x p x^{-1}\left(\operatorname{Ad}(x)\left[P_{j}-\left(1-\operatorname{Ad}\left(p_{j}^{-1}\right)\right) X\right]\right)_{j} \tag{3.12b}
\end{equation*}
$$

Suppose $(x X, p P)$ is in the kernel of $\mathrm{d} \Psi$. Write $X=X_{\|}+X_{\perp}$, where $X_{\|} \in L(\bar{T})$ and $X_{\perp} \in L(\bar{T})^{\perp}$ (this is the orthogonal complement relative to any Ad-invariant metric on the Lie algebra of $S O(3)$). Then, from (3.12b), we have, for each j,

$$
\begin{align*}
\left(1-\operatorname{Ad} p_{j}^{-1}\right) X_{\perp} & =0 \tag{*}\\
\left(1-\operatorname{Ad} p_{j}^{-1}\right) X_{i \mid} & =P_{j} \tag{**}
\end{align*}
$$

From (*) it follows that $\exp \left(\epsilon X_{\perp}\right)$ commutes with p_{j}, for every real ϵ. Since $p \notin B$, the isotropy group at p has only two elements and therefore $X_{\perp}=0$. Then, using ($* *$), we have

$$
\begin{aligned}
(x X, p P) & =\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0}(x \exp (\epsilon X), \exp (-\epsilon X) p \exp (\epsilon X)) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \exp (-\epsilon X) \cdot(x, p)
\end{aligned}
$$

Thus we have proved that if ($x X, p P$) is in the kernel of $\mathrm{d} \Psi$ then $(x X, p P)$ is tangent to the $N(\bar{T})$-orbit through (x, p).

Combining the above results, we see that the image of $\bar{\Psi}$ is a submanifold of $S O(3)^{2 g}$ and $\bar{\Psi}$ is a diffeomorphism onto its image. This image is the union of all $S O(3)$ orbits through the points of $N(\bar{T})^{2 g}$ where the isotropy group has two elements. Thus this image consists only of points where the isotropy group has two elements. Moreover, by Proposition 3.4(v), any point in $S O(3)^{2 g}$ where the isotropy group has two elements is on the $S O(3)$-orbit through some point in $N(\bar{T})^{2 g}$. Thus

$$
\bar{\Psi}\left(\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})\right)=F .
$$

As noted after (3.11d), the space $\left(N(\bar{T})^{2 g} \backslash B\right)$ is a smooth $2 g$-dimensional submanifold of $S O(3)^{2 g}$, with $2^{2 g}-1$ components. The quotient $\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})$, being the quotient under a free action, is a smooth $(3+2 g-1)$-dimensional manifold, and the corresponding quotient map is a principal $N(\bar{T})$-bundle projection map. Thus F is a $(2 g+2)$ dimensional submanifold of $S O(3)^{2 g}$. The $N(\bar{T})$-conjugation carries each component of $N(\bar{T})^{2 g}$ into itself. Thus F also has $2^{2 g}-1$ components.

We have proved Proposition 3.10(a) and more:
Proposition 3.13. The set F of all points in $S O(3)^{2 g}$ where the isotropy group has two elements is a smooth $(2 g+2)$-dimensional submanifold of $\operatorname{SO}(3)^{2 g}$. Moreover,

$$
\begin{equation*}
\bar{\Psi}:\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T}) \rightarrow F \text { is a diffeomorphism. } \tag{3.13}
\end{equation*}
$$

The group $S O(3)$ acts on $S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)$ by left-multiplication on the first factor, and this action commutes with the action of $N(\bar{T})$. Thus we have an induced natural action of $S O(3)$ on $\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})$. The corresponding quotient is

$$
\begin{equation*}
\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T}) \quad \xrightarrow{p} \quad\left(N(\bar{T})^{2 g} \backslash B\right) / N(T), \tag{3.14a}
\end{equation*}
$$

which is essentially the projection on the 'second factor'.
Clearly, $\bar{\Psi}$ is equivariant under the action of $S O(3)$. We have then the commutative diagram

$$
\begin{array}{ccc}
{\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})} & \stackrel{\bar{\Psi}}{ } & \operatorname{Im}(\bar{\Psi})=F \\
\downarrow p & \downarrow & p^{\prime} \tag{3.14b}\\
{\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})} & \xrightarrow{\bar{\Psi}} & \operatorname{Im} \bar{\Psi} / S O(3)=F / S O(3)
\end{array}
$$

in which the quotient $\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$ is with respect to the conjugation action, and the bottom arrow is induced by the inclusion $N(\bar{T})^{2 g} \backslash B \rightarrow F \subset S O(3)^{2 g}$.

Lemma 3.14. The bottom arrow $\overline{\bar{\Psi}}$ in (3.14b) is a homeomorphism.
Proof. Since $\bar{\Psi}$ is a homeomorphism and p and p^{\prime} are quotient maps, it will suffice to prove that $\overline{\bar{\psi}}$ is one-to-one. Injectivity of $\overline{\bar{\psi}}$ is equivalent to $\bar{\Psi}$ mapping distinct $S O$ (3)-orbits into distinct orbits. To this end, let $(x, s),(y, u) \in S O(3) \times N(\bar{T})^{2 g}$ be such that there is a $w \in S O$ (3) with $w \Psi(x, s) w^{-1}=\Psi(y, u)$. Then $\Psi(w x, s)=\Psi(y, u)$ and so, by Lemma 3.11, $(w x, s)$ and (y, u) lie on the same $N(\bar{T})$-orbit in $S O(3) \times N(\bar{T})^{2 g}$. Therefore, the points $[(x, s)]$ and $[(y, u)]$ in $\left[S O(3) \times N(\bar{T})^{2 g}\right] / N(\bar{T})$ lie on the same $S O(3)$ orbit, with $w \cdot[(x, s)]=[(y, u)]$.

To understand the diagram (3.14b) at the smooth level we will show that the vertical arrow p corresponds to a smooth fiber bundle with fiber $S O(3) /\{I, \tau\}$, associated to a certain smooth principal bundle over $\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$. The principal bundle will have the structure group $N(\bar{T}) /\{I, \tau\}$. Having this, it clearly follows that the differentiable structure on $\operatorname{Im} \bar{\Psi} / S O(3)$ which makes $\overline{\bar{\Psi}}$ a diffeomorphism is the one which makes the quotient $p^{\prime}: \operatorname{Im} \bar{\Psi} \rightarrow \operatorname{Im} \bar{\Psi} / S O(3)$ a submersion; consequently, with this differentiable structure, p^{\prime} is a fiber-bundle projection.

The conjugation action of $N(\bar{T})$ on $N(\bar{T})^{2 g} \backslash B$ has isotropy group $\{I, \tau\}$ everywhere, and so the quotient space $\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$ is a smooth manifold and the projection $\left[N(\bar{T})^{2 g} \backslash B\right] \rightarrow\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$ is a principal $N(\bar{T}) /\{I, \tau\}$-bundle.

Let

$$
\begin{equation*}
N^{\prime}(\bar{T})=N(\bar{T}) /\{I, \tau\} . \tag{3.15a}
\end{equation*}
$$

Note that $\{I, \tau\}$ is the center of $N(\bar{T})$.
Note also that $\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$ is naturally diffeomorphic with $\left[N(\bar{T})^{2 g} \backslash B\right] / N^{\prime}(\bar{T})$, where the action of $N^{\prime}(\bar{T})$ on $\left[N(\bar{T})^{2 g} \backslash B\right]$ is simply the one induced by that of $N(\bar{T})$.

The smooth action of $N(\bar{T})$ on $S O(3)$ given by

$$
\begin{equation*}
(h, x) \mapsto x h^{-1} \tag{3.15b}
\end{equation*}
$$

induces a smooth action of $N^{\prime}(\bar{T})$ on $S O(3) /\{I, \tau\}$. Then we have the associated smooth fiber bundle

$$
\begin{aligned}
& \left(\frac{S O(3)}{\{I, \tau\}} \times\left(N(\bar{T})^{2 g} \backslash B\right)\right) / N^{\prime}(\bar{T}) \\
& \downarrow \\
& \left(N(\bar{T})^{2 g} \backslash B\right) / N^{\prime}(\bar{T}),
\end{aligned}
$$

where the quotient on top is with respect to the action of $N^{\prime}(\bar{T})$ on $S O(3) /\{I, \tau\} \times$ $\left(N(\bar{T})^{2 g} \backslash B\right)$ given by

$$
\begin{equation*}
h \cdot(x\{I, \tau\}, p)=\left(x h^{-1}\{I, \tau\}, h p h^{-1}\right) \tag{3.15c}
\end{equation*}
$$

Note that this action is free and so the quotient is a smooth manifold.
The identity map

$$
S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right) \rightarrow S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)
$$

induces a surjection

$$
S O(3) \times\left(N(T)^{2 g} \backslash B\right) \rightarrow \frac{S O(3)}{\{I, \tau\}} \times\left(N(\bar{T})^{2 g} \backslash B\right)
$$

which carries distinct $N(\bar{T})$-orbits onto distinct $N^{\prime}(\bar{T})$-orbits. Thus there is a well-defined bijection

$$
\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T}) \rightarrow\left[\frac{S O(3)}{\{I, \tau\}} \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N^{\prime}(\bar{T})
$$

The two quotients here are with respect to free actions and so are smooth manifolds and the bijection above is a diffeomorphism.

We have the commutative diagram

$$
\begin{array}{ccc}
{\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})} & \rightarrow & {\left[\frac{S O(3)}{\{I, \tau\}} \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N^{\prime}(\bar{T})} \\
\downarrow p & \downarrow p_{1} \tag{3.15d}\\
{\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})} & \rightarrow & \left(N(\bar{T})^{2 g} \backslash B\right) / N^{\prime}(\bar{T})
\end{array}
$$

where the top and bottom arrows are diffeomorphisms and the vertical arrows are quotient maps. The important point here is that the vertical arrow on the right is a fiber bundle; it is the fiber bundle with fiber $S O(3) /\{I, \tau\}$ associated to the principal $N^{\prime}(\bar{T})$-bundle $\left[N(\bar{T})^{2 g} \backslash B\right] \rightarrow\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$, where the structure group $N^{\prime}(\bar{T})$ acts on the fiber $S O(3) /\{I, \tau\}$ in the manner induced by (3.15b).

Stringing together the two commutative diagrams (3.14b) and (3.15d), we obtain the commuting diagram:

$$
\begin{array}{ccc}
{\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N^{\prime}(\bar{T})} & \rightarrow & F \\
\downarrow p_{1} & & \downarrow p^{\prime} \tag{3.15e}\\
{\left[N(\bar{T})^{2 g} \backslash B\right] / N^{\prime}(\bar{T})} & \rightarrow & F / S O(3)
\end{array}
$$

Here p_{1} is a fiber bundle projection, p^{\prime} is a quotient map, the top horizontal arrow is a diffeomorphism and the bottom horizontal arrow is a homeomorphism. Thus the differentiable structure on $F / S O(3)$ which makes the bottom arrow in (3.15e) (or, equivalently, in
(3.14b)) a diffeomorphism makes p^{\prime} a submersion. We equip $F / S O(3)$ with this differentiable structure. Thus we have proved Proposition 3.10(b); in fact, we have:

Proposition 3.15. Let F be the subset of $S O(3)^{2 g}$ consisting of all points where the isotropy group of the $\mathrm{SO}(3)$-action has two elements. Then the diagram

$$
\begin{array}{ccc}
{\left[S O(3) \times\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})} & \stackrel{\bar{\psi}}{\rightarrow} & F \\
\downarrow p & \downarrow p^{\prime} \tag{3.15f}\\
{\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})} & \xrightarrow{\bar{\psi}} & F / S O(3)
\end{array}
$$

is an isomorphism, in the smooth category, of fiber bundles with fiber $S O(3) /\{I, \tau\}$ and structure group $N^{\prime}(\bar{T}) \stackrel{\text { def }}{=} N(\bar{T}) /\{I, \tau\}$, where τ is the 180° rotation belonging to the maximal torus \bar{T}. The bottom arrow is induced by the inclusion $N(\bar{T})^{2 g} \backslash B \subset F$.

Furthermore, the fiber bundles given by p and p^{\prime} are each isomorphic, in the smooth category, to the fiber bundle with fiber $S O(3) /\{I, \tau\}$ associated to the principal $N^{\prime}(\bar{T})$ bundle given by the quotient $\left[N(\bar{T})^{2 g} \backslash B\right] \rightarrow\left[N(\bar{T})^{2 g} \backslash B\right] / N(\bar{T})$, where the action of the structure group $N^{\prime}(\bar{T})$ on the fiber $S O(3) /\{I, \tau\}$ is the one induced by $h \cdot x=x h^{-1}$ for $h \in N(\bar{T}), x \in S O(3)$.

It will be useful to coordinatize $N(\bar{T})^{2 g}$ as follows. Let J be a set of $2 g$ elements, and view $\bar{T}^{2 g}$ as \bar{T}^{J}. For $S \subset J$, we use the diffeomorphism

$$
\begin{equation*}
\phi_{S}: \bar{T}^{2 g} \rightarrow N(\bar{T})^{2 g}:\left(t_{j}\right)_{j \in J} \mapsto\left(\phi_{S}^{j}\left(t_{j}\right)\right)_{j \in J} \tag{3.16a}
\end{equation*}
$$

where

$$
\phi_{S}^{j}(x)= \begin{cases}x & \text { if } j \in S \tag{3.16b}\\ x n & \text { if } j \notin S\end{cases}
$$

The sets $\phi_{S}\left(\bar{T}^{2 g}\right)$ are the different components of $N\left(\bar{T}^{2 g}\right)$.
We will use ϕ_{S} to transfer to $\bar{T}^{2 g}$: (a) the conjugation action of $N(\bar{T})$ on $N(\bar{T})^{2 g}$, and (b) the set B. Recall that B is the set of points in $\bar{T}^{2 g}$ where the $S O(3)$-action has a two-element isotropy group.

Proposition 3.16.

(a) Consider the action of $N(\bar{T})$ on $\bar{T}^{2 g}$ given by (for $s \in \bar{T}$)

$$
s \cdot\left(t_{j}\right)_{j \in J}=\left(t_{j}^{\prime}\right)_{j \in J}, \quad \text { where } \quad t_{j}^{\prime}= \begin{cases}t_{j} & \text { if } j \in S \tag{3.16c}\\ s^{2} t_{j} & \text { if } j \notin S\end{cases}
$$

and

$$
s n \cdot\left(t_{j}\right)_{j \in J}=\left(t_{j}^{\prime \prime}\right)_{j \in J}, \quad \text { where } \quad t_{j}^{\prime \prime}= \begin{cases}t_{j}^{-1} & \text { if } j \in S \tag{3.16d}\\ s^{2} t_{j}^{-1} & \text { if } j \notin S\end{cases}
$$

Then $\phi_{S}: \bar{T}^{2 g} \rightarrow N(\bar{T})^{2 g}$ is equivariant.
(b) If $S=J$ then $\phi_{S}\left(\bar{T}^{2 g}\right) \subset B$; if $S \neq J$ then $\phi_{S}^{-1}(B)$ is the orbit of the subset $\{I, \tau\}^{2 g}$ under the action of $N(\bar{T})$:

$$
B_{S} \stackrel{\text { def }}{=} \phi_{S}^{-1}(B)=N(\bar{T}) \cdot\{I, \tau\}^{2 g}
$$

(c) If S_{1}, S_{2} are distinct subsets of J then

$$
\begin{aligned}
& {\left[\operatorname{Im}\left(\phi_{S_{1}}\right) / S O(3)\right] \cap\left[\operatorname{Im}\left(\phi_{S_{2}}\right) / S O(3)\right]} \\
& \quad=\left[\phi_{S_{1}}\left(B_{S_{1}}\right) / S O(3)\right] \cap\left[\phi_{S_{2}}\left(B_{S_{2}}\right) / S O(3)\right.
\end{aligned}
$$

Proof.

(a) Readily verified by inspection.
(b) Recall from (3.11c) that $B=\bar{T}^{2 g} \cup B^{\prime}$, where B^{\prime} is specified in (3.11d). If $S=J$, then ϕ_{S} is the inclusion map $\bar{T}^{2 g} \rightarrow N(\bar{T})^{2 g}$, and so $\phi_{J}\left(\bar{T}^{2 g}\right)=\bar{T}^{2 g} \subset B$.
Now suppose $S \neq J$. Consider a point $t=\left(t_{j}\right)_{j \in J} \in B_{S}$; let $\phi_{S}(t)=x=\left(x_{j}\right)_{j \in J}$. Then, since $S \neq J$, there is some $k \in J \backslash S$, and so $x_{k}=t_{k} n \in N(\bar{T}) \backslash \bar{T}$, and so, in particular, $x \in B \backslash \bar{T}^{2 g}=B^{\prime}$. Therefore, by the definition of B^{\prime} in (3.11d), $x_{j} \in\{I, \tau\}$ for every $j \in S$ and there is some $y \in \bar{T}$ such that $x_{k} \in\{y n, y \tau n\}$ for every $k \in J \backslash S$. Thus, $t_{j} \in\{I, \tau\}$ for every $j \in S$ and there is some $y \in \bar{T}$ such that $t_{k} \in\{y, y \tau\}$ for every $k \in J \backslash S$. Then t belongs to the $N(\bar{T})$-orbit through a point $t^{\prime} \in\{I, \tau\}^{2 g}$. Thus $B_{S} \subset N(\bar{T}) \cdot\{I, \tau\}^{2 g}$.

Conversely, again with $S \neq J$, the isotropy group of the $N(\bar{T})$-action (as given in (3.16c) and (3.16d)) at any point of $\{I, \tau\}^{2 g} \subset \bar{T}^{2 g}$ is a four-element group (s or $s n$, where $s \in \bar{T}$, belongs to the isotropy group if and only if $s^{2}=I$), and so no point on $N(\bar{T}) \cdot\{I, \tau\}^{2 g}$ has isotropy group with exactly two elements, and so $N(\bar{T}) \cdot\{I, \tau\}^{2 g} \subset$ B_{S}.
(c) Suppose $\phi_{S_{2}}\left(t_{j}^{\prime}\right)_{j \in J}=x \phi_{S_{1}}\left(t_{j}\right)_{j \in J} x^{-1}$ for some $\left(t_{j}\right)_{j \in J},\left(t_{j}^{\prime}\right)_{j \in J} \in \bar{T}^{2 g}$, and $x \in$ $S O$ (3). We shall show that $\left(t_{j}\right)_{j \in J} \in B_{S_{1}}$ and $\left(t_{j}^{\prime}\right)_{j \in J} \in B_{S_{2}}$. This will imply the desired result. In (b) we have seen that $\left(u_{j}\right) \in B_{S}$ means that $i_{j} \in\{I, \tau\}$ for all $j \in S$ and there is some $y \in \bar{T}$ such that $y u_{k} \in\{I, \tau\}$ for all $k \in J \backslash S$.
First we note that $x \notin N(\bar{T})$. For if x were an element of $N(\bar{T})$, then, picking $j \in S_{1} \backslash S_{2}$ (if this set is empty we can interchange S_{1} with S_{2}, and t with t^{\prime}), we would have $\phi_{S_{2 j}}\left(t_{j}^{\prime}\right)=$ $x \phi_{S_{1 j}}\left(t_{j}\right) x^{-1}=t_{j}^{ \pm 1} \in \bar{T}$, which is impossible since $\phi_{S_{2 j}}\left(t_{j}^{\prime}\right) \in N(\bar{T}) \backslash \bar{T}$ as $j \notin S_{2}$.

Let $j_{*} \in S_{1} \cap S_{2}$; then $t_{j_{*}}^{\prime}=x t_{j_{*}} x^{-1}$. Since $x \notin N(\bar{T})$, it follows from Observation 3.3(iii), that t_{j} and t_{j}^{\prime} must be equal to I.

Consider $j \in S_{1} \backslash S_{2}$. Then $\phi_{S_{1 j}}\left(t_{j}\right)=t_{j} \in \bar{T}$ while $\phi_{S_{2 j}}\left(t_{j}^{\prime}\right)=t_{j}^{\prime} n$ is a 180° rotation. So t_{j}, being conjugate to $t_{j}^{\prime} n$, is the 180° rotation $\tau \in \bar{T}$. Similarly, $t_{j}^{\prime}=\tau$ for all $j \in S_{2} \backslash S_{1}$.

Now consider $j, k \in J \backslash\left(S_{1} \cup S_{2}\right)$. Writing out the conditions $x \phi_{S_{1 j}}\left(t_{j}\right) x^{-1}=\phi_{S_{2 j}}\left(t_{j}^{\prime}\right)$ and $x \phi_{S_{1 k}}\left(t_{k}\right) x^{-1}=\phi_{S_{2 k}}\left(t_{k}^{\prime}\right)$ we have $x\left(t_{j} n\right) x^{-1}=t_{j}^{\prime} n$ and $x\left(t_{k} n\right) x^{-1}=t_{k}^{\prime} n$. Then

$$
x\left(t_{j} t_{k}^{-1}\right) x^{-1}=t_{j}^{\prime} t_{k}^{\prime-1}
$$

Since $x \notin N(\bar{T})$, Observation 3.3(iii) implies that $t_{j}=t_{k}$. Thus there is a $y \in \bar{T}$ such that $t_{j}=y$ for all $j \in J \backslash\left(S_{1} \cup S_{2}\right)$. Then $t_{j}^{\prime}=\phi_{S_{2 j}}\left(t_{j}^{\prime}\right) n^{-1}=x \phi_{S_{1 j}}\left(t_{j}\right) x^{-1} n^{-1}=x y n x^{-1} n^{-1}=$ y^{\prime}, independent of the choice of j in $J \backslash\left(S_{1} \cup S_{2}\right)$.

Consider $j \in S_{2} \backslash S_{1}$ and $k \in J \backslash\left(S_{1} \cup S_{2}\right)$. Then

$$
t_{j}^{\prime}=\phi_{S_{2 j}}\left(t_{j}^{\prime}\right)=x \phi_{S_{1 j}}\left(t_{j}\right) x^{-1}=x t_{j} n x^{-1}
$$

and

$$
t_{k}^{\prime} n=\phi_{S_{2 k}}\left(t_{k}^{\prime}\right)=x \phi_{S_{1 k}}\left(t_{k}\right) x^{-1}=x t_{k} n x^{-1}
$$

So, using ($\left.t_{k}^{\prime} n\right)^{1}=t_{k}^{\prime} n$,

$$
t_{j}^{\prime} t_{k}^{\prime} n=x t_{j} t_{k}^{-1} x^{-1}
$$

Now $t_{j}^{\prime}=\tau$ since $j \in S_{2} \backslash S_{1}$, and $t_{k}^{\prime}=y^{\prime}$, independent of $k \in J \backslash\left(S_{1} \cup S_{2}\right)$; so

$$
t_{j} t_{k}^{-1}=x^{-1}\left(\tau y^{\prime} n\right) x
$$

Thus $t_{j} t_{k}^{-1}$ is conjugate to a 180° rotation and therefore must be τ. Since $t_{k}=y$, independent of $k \in J \backslash\left(S_{1} \cup S_{2}\right)$, we have $t_{j}=y \tau$ for every $j \in S_{2} \backslash S_{1}$.

Thus we have proved the following for $\left(t_{j}\right)_{j \in J}:(\mathrm{i})$ if $j \in S_{1}$ then t_{j} is either I (if $j \in S_{1} \cap S_{2}$) or τ (if $j \in S_{1} \backslash S_{2}$); (ii) there is a $y \in \bar{T}$ such that if $j \in J \backslash S_{1}$ then either $t_{j}=y$ (if $j \in J \backslash\left(S_{1} \cup S_{2}\right.$)) or $t_{j}=y \tau$ (if $j \in S_{2} \backslash S_{1}$). All of this simply says that $\left(t_{j}\right)_{j \in J} \in B_{S_{1}}$. Similarly, $\left(t_{j}^{\prime}\right)_{j \in J} \in B_{S_{2}}$.

3.5. The structure of $\overline{\mathcal{F}}_{2 g-2}(\pm I)$

Recall (3.5a) that $\overline{\mathcal{F}}_{2 g-2}(z)=\tilde{K}_{g}^{-1}(z) \cap F$, where F is the subset of $S O(3)^{2 g}$ consisting of all points where the isotropy group of the $S O$ (3)-action is a two-element group.

It will be convenient to take $N(\bar{T})^{2 g}$ as $N(\bar{T})^{J}$, where J is the $2 g$-element set

$$
J=\{1,2,5,6, \ldots, 4 g-3,4 g-2\}
$$

With this notation,

$$
\begin{equation*}
\tilde{K}_{g}(p)=\prod_{j=1,5, \ldots, 4 g-3} \tilde{p}_{j+1}^{-1} \tilde{p}_{j}^{-1} \tilde{p}_{j+1} \tilde{p}_{j} \tag{3.17a}
\end{equation*}
$$

where \tilde{p}_{i} is any element of $S U(2)$ which covers $p_{i} \in S O(3)$. (For $p \in N(\bar{T})$, each commutator appearing in the product above is actually an element of T.)

If $x, y \in N(\bar{T})$, then straightforward computation shows

$$
\tilde{y}^{-1} \tilde{x}^{-1} \tilde{y} \tilde{x}= \begin{cases}I & \text { if } x, y \in \bar{T} \tag{3.17b}\\ \tilde{x}^{2} & \text { if } x \in \bar{T} \text { and } y \in N(\bar{T}) \\ \tilde{y}^{-2} & \text { if } x \in N(\bar{T}) \text { and } y \in \bar{T} \\ \left(\tilde{y} \tilde{x}^{-1}\right)^{2} & \text { if } x, y \in N(\bar{T})\end{cases}
$$

Recall from (3.16a) and (3.16b) the charts ϕ_{S} parametrizing the components of $N(\bar{T})^{2 g}$. We will use ϕ_{S} to transfer to $\bar{T}^{2 g}$ the map \tilde{K}_{g}.

Proposition 3.17.

$$
\begin{equation*}
\left(\tilde{K}_{g} \circ \phi_{S}\right)\left(t_{j}\right)_{j \in J}=\prod_{j=1,5, \ldots, 4 g-3} \tilde{t}_{j}^{m_{j}} \tilde{t}_{j+1}^{m_{j+1}}=\prod_{j \in J} \tilde{t}_{j}^{m_{j}} \tag{3.17c}
\end{equation*}
$$

where \tilde{t}_{j} is any element of T covering $t_{j} \in \bar{T}$, and, for $j=1,5, \ldots, 4 g-3$,

$$
\left(m_{j}, m_{j+1}\right)= \begin{cases}(0,0) & \text { if } j, j+1 \in S \tag{3.17d}\\ (2,0) & \text { if } j \in S \text { and } j+1 \notin S \\ (0,-2) & \text { if } j \notin S \text { and } j+1 \in S \\ (-2,2) & \text { if } j \notin S \text { and } j+1 \notin S\end{cases}
$$

Proof. Follows by combining (3.17a) and (3.17b).
Recall that, for $z= \pm I$,

$$
\begin{equation*}
\overline{\mathcal{F}}_{2 g-2}(z)=\tilde{K}_{g}^{-1}(z) \cap F \tag{3.18}
\end{equation*}
$$

Proposition 3.18. Suppose $g \geq 2$. Then $\overline{\mathcal{F}}_{2 g-2}(\pm I)$ are $(2 g+1)$-dimensional submanifolds of $S O(3)^{2 g}$.

The proof of this is contained in that of the next result, where we identify the components of $\overline{\mathcal{F}}_{2 g-2}(\pm I)$:

Proposition 3.19. Suppose $g \geq 2$. Then $\overline{\mathcal{F}}_{2 g-2}(I)$ and $\overline{\mathcal{F}}_{2 g-2}(-I)$ each have $2^{2 g}-1$ connected components.

Proof. Recall that $\overline{\mathcal{F}}_{2 g-2}(z)=\tilde{K}_{g}^{-1}(z) \cap F$, where F is the set of points in $S O(3)^{2 g}$ where the isotropy group of the $S O(3)$ action has two elements.

By Proposition 3.13, F is the diffeomorphic image under $\bar{\Psi}$ of the quotient ($S O(3) \times$ $\left.\left(N(\bar{T})^{2 g} \backslash B\right)\right) / N(\bar{T})$, the latter being a space with $2^{2 g}-1$ components. Moreover, the space $\overline{\mathcal{F}}_{2 g-2}(z)=\tilde{K}_{g}^{-1}(z) \cap F$ is diffeomorphic to the union of the $2^{2 g}-1$ connected sets $\left(S O(3) \times\left(\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right)\right) / N(\bar{T})$, with S running over all proper subsets of the $2 g$-element indexing set $J=\{1,2,5,6, \ldots, 4 g-3,4 g-2\}$. Here $\phi_{S}: \bar{T}^{2 g} \rightarrow N(\bar{T})^{2 g}$ is the map given in (3.16a).

As we have noted,

$$
\begin{equation*}
\left(\tilde{K}_{g} \circ \phi_{S}\right)(t)=\prod_{j \in J} \tilde{t}_{j}^{m_{j}} \tag{3.19a}
\end{equation*}
$$

where $t=\left(t_{j}\right)_{j \in J} \in \bar{T}^{2 g}$ is covered by $\left(\tilde{t}_{j}\right)_{j \in J} \in T^{2 g}$, and $m_{j} \in\{0, \pm 2\}$ are as specified in (3.17d).

We work with a proper subset $S \subset J$. Fix $j_{1} \in J$ such that $m_{j_{1}} \neq 0$ (by (3.17d) such j_{1} exists). It is readily verified from (3.19a) that the restriction of the coordinate projection $\bar{T}^{J} \rightarrow \bar{T}^{J \backslash\left(j_{1}\right\}}$ to $\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z)$ is a bijection. Thus $\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z)$ is diffeomorphic to $\bar{T}^{2 g-1}$.

Since $\operatorname{dim} B_{S}=1$ and $\operatorname{dim}\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(\pm I)=2 g-1$, and $g \geq 2$, it follows that each set $\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}$ is connected and has dimension $2 g-1$. The corresponding component of $\overline{\mathcal{F}}_{2 g-2}(z)$ is

$$
\begin{equation*}
\overline{\mathcal{F}}_{2 g-2}(z)_{S}=\text { union of all } S O(3) \text {-orbits through } \phi_{S}\left(\bar{T}^{2 g} \backslash B_{S}\right) \cap \tilde{K}_{g}^{-1}(z) \tag{3.19b}
\end{equation*}
$$

This is diffeomorphic to $\left(S O(3) \times\left(\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right)\right) / N(\bar{T})$, and therefore has dimension $2 g+1$.

3.6. The quotient $\overline{\mathcal{F}}_{2 g-2}(\pm I) \rightarrow \overline{\mathcal{F}}_{2 g-2}(\pm I) / S O(3)$

We have seen (in Proposition 3.15) that the quotient map $F \rightarrow F / S O(3)$ is a fiber bundle projection, where F is the subset of $S O(3)^{2 g}$ consisting of all points where the isotropy group has two elements. For $z \in\{I,-I\}$, the set $\overline{\mathcal{F}}_{2 g-2}(z)$ is, by Proposition 3.19, a submanifold of F, invariant under the action of $S O(3)$. Thus the bundle projection $F \rightarrow$ $F / S O(3)$ restricts to a fiber bundle $\overline{\mathcal{F}}_{2 g-2}(z) \rightarrow \overline{\mathcal{F}}_{2 g-2}(z) / S O(3)$, with fiber $S O(3) /\{I, \tau\}$ (where τ is a 180° rotation) and structure group $N(\bar{T}) /\{I, \tau\}$, where \bar{T} is a maximal torus (containing τ) in $S O(3)$ and τ is the 180° rotation in \bar{T}. We set this out in detail in the following result.

Theorem 3.20. Let z be I or -1. The quotient space $\overline{\mathcal{F}}_{2 g-2}(z) / S O(3)$ is the union of $2^{2 g}-1$ disjoint components. For any proper subset $S \subset J$, let $\overline{\mathcal{F}}_{2 g-2}(z)_{S}$ be as in (3.19b). Then the sets $\overline{\mathcal{F}}_{2 g-2}(z)_{S} / S O(3)$ are the $2^{2 g}-1$ disjoint components of $\overline{\mathcal{F}}_{2 g-2}(z) / S O(3)$. Moreover, for each proper subset S of J, there is a commutative diagram

$$
\left[\begin{array}{ccc}
\left.\frac{S O(3)}{\{I, \tau\}} \times\left\{\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right\}\right] / N^{\prime}(\bar{T}) & \xrightarrow{\psi_{S}} & \overline{\mathcal{F}}_{2 g-2}(z)_{S} \\
\downarrow q & \downarrow q^{\prime} \\
{\left[\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right] / N^{\prime}(\bar{T})} & \xrightarrow{\rightarrow} & \overline{\mathcal{F}}_{2 g-2}(z)_{S} / S O(3) \simeq \mathcal{M}_{2 g-2}^{0}(z)_{S} \tag{3.20a}
\end{array}\right.
$$

in which the vertical arrows are quotient maps, and the horizontal arrows are diffeomorphisms. The vertical arrow given by q is the fiber bundle with fiber $S O(3) /\{I, \tau\}$ associated to the principal $N^{\prime}(\bar{T})$-bundle given by the quotient map

$$
\begin{equation*}
\left[\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right] \rightarrow\left[\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right] / N^{\prime}(\bar{T}), \tag{3.20b}
\end{equation*}
$$

with $N^{\prime}(\bar{T})$ acting on $S O(3) /\{I, \tau\}$ via conjugation, as in (3.15b). Thus the vertical arrow q^{\prime} also specifies a fiber bundle with fiber $S O(3) /\{I, \tau\}$ and structure group $N^{\prime}(\bar{T})$, and the diagram (3.20a) is an isomorphism of smooth fiber bundles in this category.

The following gives an explicit description of the spaces $\overline{\mathcal{F}}_{2 g-2}(z)_{S} / S O(3)$.
Proposition 3.21. Let S be a proper subset of J. Let W be the two-element group $\{I, w\}$ acting on $\bar{T}^{2 g-2}$ by $w x=x^{-1}$. There is a smooth one-to-one map

$$
j_{S}: \bar{T}^{2 g-2} \rightarrow S O(3)^{2 g}
$$

such that
(i) $\operatorname{det} d j_{S}$ is constant $(\neq 0)$ everywhere on $\bar{T}^{2 g-2}$,
(ii) $j_{S}\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right) \subset \overline{\mathcal{F}}_{2 g-2}(z)_{S}$,
(iii) j s induces a diffeomorphism $\bar{j}_{S}:\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right) / W \rightarrow \overline{\mathcal{F}}_{2 g-2}(z)_{S} / S O(3)$.

Proof. Since S is a proper subset of J, the specification of the m_{j} given in (3.17d) allows us to choose distinct $j_{1}, j_{2} \in J$ such that $m_{j_{1}} \neq 0$ and $j_{2} \notin S$. Let

$$
j_{S}^{\prime}: \bar{T}^{\left.J \backslash j_{1}, j_{2}\right\}} \rightarrow \bar{T}^{2 g}: x \mapsto x^{\prime}
$$

be specified by

$$
x_{j}^{\prime}=\left\{\begin{array}{ll}
x_{j} & \text { if } j \in J \backslash\left\{j_{1}, j_{2}\right\}, \\
I & \text { if } j=j_{2}, \\
\prod_{\left.j \in J \backslash j_{1}, j_{2}\right\}} x_{j}^{-m_{j} / m_{j_{1}}} & \text { if } j=j_{1} \text { and } z=I, \\
\tau \prod_{j \in J \backslash\left(j_{1}, j_{2}\right)} x_{j}^{-m_{j} / m_{j_{1}}} & \text { if } j=j_{1} \text { and } z=-I,
\end{array},\right.
$$

where τ is the 180° rotation belonging to \bar{T}. Note that $m_{j} / m_{j_{1}} \in\{0, \pm 1\}$. Then we define

$$
j_{S}=\phi_{S} \circ j_{S}^{\prime}
$$

The definition of j_{S}^{\prime} shows that $\mathrm{d} j_{S}^{\prime}(X)=X^{\prime}=\left(X_{j}^{\prime}\right)_{j \in J}$, where

$$
X_{j}^{\prime}= \begin{cases}X_{j} & \text { if } j \in J \backslash\left\{j_{1}, j_{2}\right\}, \\ 0 & \text { if } j=j_{2}, \\ -\sum_{j \in J \backslash\left\{j_{1}\right\}} \frac{m_{j}}{m_{j_{1}}} X_{j} & \text { if } j=j_{1} .\end{cases}
$$

It follows from this (or from the corresponding expression for $\mathrm{d} j_{S}^{\prime *} \mathrm{~d} j_{S}^{\prime}$) that

$$
\operatorname{det} \mathrm{d} j_{S}^{\prime}=\sqrt{1+\sum_{j \in . J \backslash\left\{j_{1}, j_{2}\right\}} \frac{m_{j}^{2}}{m_{j_{1}}^{2}}}
$$

(the specification of the m_{j} given in (3.17d) shows that $\operatorname{det} \mathrm{d} j_{S}^{\prime}=\sqrt{2 g-\# S-\left|m_{j_{2}}\right| / 2}$. Since ϕ_{S} is an isometry, $\operatorname{det} \mathrm{d} j_{S}=\operatorname{det} \mathrm{d} j_{S}^{\prime}$.

By (3.19a), we have $\left(\tilde{K}_{g} \circ \phi_{S}\right)(x)=\prod_{j \in J} \tilde{x}_{j}^{m_{j}}$, where $\tilde{x}_{j} \in T$ covers $x_{j} \in \bar{T}$. Using the definition of the x_{j}^{\prime}, and the fact that $\tilde{\tau}^{2}=-I$, we see then that

$$
\tilde{K}_{g} \circ j_{S}(x)=\left(\tilde{K}_{g} \circ \phi_{S}\right)\left(j_{S}^{\prime}(x)\right)=\left(\tilde{K}_{g} \circ \phi_{S}\right)\left(x^{\prime}\right)=z
$$

Since $j_{2} \notin S$ and the j_{2} th component of any element in the image of j_{S}^{\prime} is, by definition, I, it follows, that for any $x \in \bar{T}^{2 g-2}$, the image $j_{S}^{\prime}(x)$ lies in B_{S} if and only if $x \in\{I, \tau\}^{2 g}$. Thus j_{S} maps $\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}$ into $\overline{\mathcal{F}}_{2 g-2}(z)_{S}$.

If two points in $j_{S}\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right)$ are on the same $S O$ (3)-orbit then the corresponding points in $j_{S}^{\prime}\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right)$ are on the same $N(\bar{T})$-orbit (this follows from Lemma 3.11). Examination of Proposition 3.16(a) then shows that ($s^{2}=1$ in (3.16c)) the points in $\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}$ are on the same W-orbit. Thus j_{s} quotients to a one-to-one map

$$
\overline{j_{S}}:\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right) / W \rightarrow \overline{\mathcal{F}}_{2 g-2}(z)_{S} / S O(3)
$$

If $y \in \overline{\mathcal{F}}_{2 g-2}(z)_{S}$ then by appropriate conjugation we can assume that $y \in \phi_{S}\left(\bar{T}^{2 g}\right)$ and $y_{j_{2}}=n$. Then the point $x^{\prime}=\phi_{S}^{-1}(y)$ has $x_{j_{2}}=I$. Since $\tilde{K}_{g} \circ \phi_{S}\left(x^{\prime}\right)=z$, the component $x_{j_{1}}^{\prime}$ is determined by the other components, and it follows that x^{\prime} lies in the image of j_{S}. Thus $\overline{j_{S}}$ is also surjective.

Since j_{S} is an immersion, so is $\overline{j_{S}}$. Moreover, $\overline{j_{S}}$ is a homeomorphism of ($\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}$) $/ W$ onto its image (the fact that $\overline{j_{S}} \mid\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right) / W$ is a closed map can be verified using the observation we made above that a point $x \in \bar{T}^{2 g-2}$ in the image of j_{S} lies in $\overline{\mathcal{F}}_{2 g-2}(z)_{S}$ if and only if $x \in \bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}$). Combining all these, we see that $\overline{j_{S}}$ is a diffeomorphism of $\left(\bar{T}^{2 g-2} \backslash\{I, \tau\}^{2 g}\right) / W$ onto its image.

3.7. The sets $\overline{\mathcal{F}}_{0}(z)$ and $\overline{\mathcal{F}}_{0}(z) / S O(3)$

Recall (from (3.5a)) that $\overline{\mathcal{F}}_{0}(z)$ is the subset of $\tilde{K}_{g}^{-1}(z)$ where the isotropy group is either $S O(3)$ or $N(\bar{T})$, the normalizer of a maximal torus \bar{T} in $S O(3)$, or is of the form $\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}$ for some 180° rotations $\tau_{1}, \tau_{2}, \tau_{3}$ around orthogonal axes.

Let

$$
F_{0}=\left\{\begin{array}{l}
\text { the subset of } S O(3)^{2 g} \text { consisting of all points where the } \tag{3.21a}\\
\text { isotropy group is either } S O(3) \\
\text { or the normalizer of a maximal torus in } S O(3) \\
\text { or a four-element group. }
\end{array}\right.
$$

These cases are covered by Proposition 3.4(i)-(iii), from where we see that a point $\left(x_{1}, \ldots, x_{2 g}\right) \in S O(3)^{2 g}$ belongs to F_{0} if and only if $\left\{x_{1}, \ldots, x_{2 g}\right\} \subset\left\{I, n_{1}, n_{2}, n_{3}\right\}$, where n_{1}, n_{2}, n_{3} are 180° rotations around three orthogonal axes. Thus, fixing 180° rotations $\tau_{1}, \tau_{2}, \tau_{3}$ around three orthogonal axes, we have

$$
\begin{equation*}
F_{0}=\bigcup_{x \in S O(3)} x F_{0}^{\prime} x^{-1}, \quad \text { where } F_{0}^{\prime}=\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2 g} \tag{3.21b}
\end{equation*}
$$

Let S_{3} be the group of permutations on $\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}$ which fix I; thus S_{3} has a natural action on F_{0}^{\prime}. Two points in F_{0}^{\prime} lie in the same S_{3}-orbit if and only if they lie in the same $S O$ (3)-orbit in F_{0} (every permutation of $\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$ can be realized as the conjugation by
some element of $S O(3)$, since the permutation $\tau_{1} \leftrightarrow \tau_{2}$ is realized by conjugation by $\tau_{3}^{1 / 2}$ - a 90° rotation around the axis for τ_{3}). Thus we have a bijection

$$
\begin{equation*}
F_{0} / S O(3) \simeq F_{0}^{\prime} / S_{3} \tag{3.21c}
\end{equation*}
$$

induced by the inclusion $F_{0}^{\prime} \subset F_{0}$.
Proposition 3.22. The sets F_{0} and F_{0}^{\prime} split into the following disjoint sets according to isotropy type:

$$
\begin{equation*}
F_{0}=F_{00} \cup F_{01} \cup F_{02} \quad \text { and } \quad F_{0}^{\prime}=F_{00}^{\prime} \cup F_{01}^{\prime} \cup F_{02}^{\prime} \tag{3.21d}
\end{equation*}
$$

where $F_{0 j}^{\prime}=F_{0 j} \cap\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2 g}$, and
(i) $F_{00}=F_{00}^{\prime}$ is the singleton consisting of the point (I, I, \ldots, I), and the isotropy groups are the full groups.
(ii) F_{01} is the set of points where the isotropy group is the normalizer of a maximal torus in $S O(3)$, and $F_{01}^{\prime}=\bigcup_{j=1}^{3}\left\{I, \tau_{j}\right\}^{2 g} \backslash\{(I, I, \ldots, I)\}$ is the set of points in F_{0}^{\prime} where the isotropy group is a two-element subgroup of S_{3}. Each $S O$ (3) orbit through a point of the set F_{01} is equivariantly diffeomorphic to the connected 2-dimensional space $S O(3) / N(K)$, where $N(K)$ is the normalizer of the maximal torus K in $S O(3)$. The number of components of F_{01} is

$$
\begin{equation*}
\# F_{01} / S O(3)=\# F_{01}^{\prime} / S_{3}=2^{2 g}-1 \tag{3.21e}
\end{equation*}
$$

(iii) F_{02} is the set of points where the isotropy group is a four-element group, and $F_{02}^{\prime}=$ $F_{0}^{\prime} \backslash \bigcup_{j=1}^{3}\left\{I, \tau_{j}\right\}^{2 g}$ is the subset of F_{0}^{\prime} where the isotropy group is trivial. Each orbit through F_{02} is equivariantly diffeomorphic to the connected 3-manifold $S O(3) /\left\{I, \tau_{1}\right.$, $\left.\tau_{2}, \tau_{3}\right\}$. The number of connected components of F_{02} is

$$
\begin{equation*}
\# F_{02} / S O(3)=\# F_{02}^{\prime} / S_{3}=\# F_{02}^{\prime}=\frac{1}{6}\left(4^{2 g}-3 \cdot 2^{2 g}+2\right) \tag{3.21f}
\end{equation*}
$$

The total number of components of F_{0} is

$$
\begin{equation*}
\# F_{0} / S O(3)=\# F_{0}^{\prime} / S_{3}=\# \frac{1}{6}\left(4^{2 g}+3 \cdot 2^{2 g}+2\right) \tag{3.21~g}
\end{equation*}
$$

Proof. The decomposition of F_{0} according to isotropy is provided by Proposition 3.4(i)(iii), which also shows that $F_{0 j}$ consists of the points in the orbits through $F_{0 j}^{\prime}$. Inspection shows that the isotropy group (in S_{3}) at each point of F_{01}^{\prime} is the two-element group generated by a transposition $\tau_{i} \leftrightarrow \tau_{j}$, while the isotropy group in S_{3} at each point of F_{02}^{\prime} is trivial. Since $\# F_{01}^{\prime}=3\left(2^{2 g}-1\right)$, and the isotropy at each point has two elements, we obtain (3.21e). Next,

$$
\# F_{02}^{\prime}=\# F_{0}^{\prime}-\# F_{00}^{\prime}-\# F_{01}^{\prime}=4^{2 g}-1-3\left(2^{2 g}-1\right)=4^{2 g}-3 \cdot 2^{g}+2
$$

and so, since S_{3} acts freely on $\# F_{02}^{\prime}$, we have $\# F_{02}^{\prime} / S_{3}$ is $\frac{1}{6}$ th of $\# F_{02}^{\prime}$. Finally, \# F_{0} / S_{3} is the sum of the $\# F_{0 j}^{\prime} / S_{3}$.

We are interested in the set

$$
\begin{equation*}
\overline{\mathcal{F}}_{0}(z)=F_{0} \cap \tilde{K}_{g}^{-1}(z) \tag{3.22a}
\end{equation*}
$$

and the quotient

$$
\begin{equation*}
\mathcal{M}_{0}^{0}(z)=\bar{F}_{0}(z) / S O(3) \simeq F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(z) / S_{3} \tag{3.22b}
\end{equation*}
$$

The set $\overline{\mathcal{F}}_{0}(z)$ is the union of the subsets $F_{0 j} \cap \tilde{K}_{g}^{-1}(z)$.
For the purpose of counting, we shall view a point of $\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2 g}$ as a g-tuple of pairs $\left(a_{i}, b_{i}\right) \in\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2}$.

By Observation 3.3(ii), for $(a, b) \in\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2}$ (with \tilde{x} denoting, as usual, any element of $S U(2)$ covering $x \in S O(3)$)

$$
\tilde{a} \tilde{b} \tilde{a}^{-1} \tilde{b}^{-1}= \begin{cases}-I & \text { if } a \text { and } b \text { are distinct elements of }\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\} \\ I & \text { otherwise }\end{cases}
$$

Let us say that a pair $(a, b) \in\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2}$ is positive if $\tilde{a} \tilde{b} \tilde{a}^{-1} \tilde{b}^{-1}=I$, and negative if $\tilde{a} \tilde{b} \tilde{a}^{-1} \tilde{b}^{-1}=-I$. Of the 16 elements in $\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}^{2}, 6$ are negative and 10 are positive.

It is readily seen that for a point $p=\left(p_{1}, \ldots, p_{g}\right) \in F_{0}^{\prime}$,

$$
\begin{array}{ll}
p \in F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(I) & \text { if } \#\left\{j: p_{j} \text { is negative }\right\} \text { is even, } \\
p \in F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(-I) & \text { if } \#\left\{j: p_{j} \text { is negative }\right\} \text { is odd. }
\end{array}
$$

Thus the total number of points in $F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(I)$ is the sum of the coefficients of the even powers of x in the polynomial $(10+6 x)^{g}$, while $\# F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(-I)$ is the sum of the coefficients of the odd powers of x in the polynomial $(10+6 x)^{g}$:

$$
\begin{equation*}
\# F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(I)=\frac{1}{2}\left(16^{g}+4^{g}\right), \quad \# F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(-I)=\frac{1}{2}\left(16^{g}-4^{g}\right) \tag{3.22c}
\end{equation*}
$$

It is clear that $F_{00}^{\prime} \cup F_{01}^{\prime} \subset \tilde{K}_{g}^{-1}(I)$. So

$$
\begin{align*}
\# F_{02}^{\prime} \cap \tilde{K}_{g}^{-1}(I) & =\# F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(I)-\# F_{00}^{\prime}-\# F_{01}^{\prime} \\
& =\frac{1}{2}\left(16^{g}+4^{g}\right)-1-3\left(2^{2 g}-1\right) \tag{3.22d}
\end{align*}
$$

and

$$
\begin{equation*}
F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(-I)=F_{02}^{\prime} \cap \tilde{K}_{g}^{-1}(-I) \tag{3.22e}
\end{equation*}
$$

Combining all these observations, we obtain:

Theorem 3.23.

(i) $\overline{\mathcal{F}}_{0}(I)$ is the union of disjoint $S O(3)$-invariant subsets

$$
\overline{\mathcal{F}}_{0}(I)=\overline{\mathcal{F}}_{00}(I) \cup \overline{\mathcal{F}}_{01}(I) \cup \overline{\mathcal{F}}_{02}(I)
$$

where $\overline{\mathcal{F}}_{00}(I)=\{(I, I, \ldots, I)\}, \overline{\mathcal{F}}_{01}(I)$ is the subset consisting of points where the isotropy group is the normalizer of a maximal torus in $S O(3)$, and $\overline{\mathcal{F}}_{02}(I)$ is the subset consisting of points where the isotropy is a four-element group.
(ii) $\overline{\mathcal{F}}_{01}(I)$ is a two-dimensional submanifold of $S O(3)^{2 g}$. The quotient $\overline{\mathcal{F}}_{01}(I) / S O(3)$ is a finite set, and each fiber of the projection $\overline{\mathcal{F}}_{01}(I) \rightarrow \overline{\mathcal{F}}_{01}(I) / S O(3)$ is diffeomorphic to $S O(3) / N(K)$, where $N(K)$ is the normalizer of any maximal torus K in $S O(3)$.
(iii) $\overline{\mathcal{F}}_{02}(I)$ is a three-dimensional submanifold of $S O(3)^{2 g}$. The quotient $\overline{\mathcal{F}}_{02}(I) / S O(3)$ is a finite set, and each fiber of the projection $\overline{\mathcal{F}}_{02}(I) \rightarrow \overline{\mathcal{F}}_{02}(I) / S O(3)$ is diffeomorphic to $S O(3) /\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}$, where $\tau_{1}, \tau_{2}, \tau_{3}$ are 180° rotations around orthogonal axes.
(iv) $\overline{\mathcal{F}}_{0}(-I)$ is a three-dimensional submanifold of $S O(3)^{2 g}$. The quotient $\overline{\mathcal{F}}_{0}(-I) / S O(3)$ is a finite set, and each fiber of the projection $\overline{\mathcal{F}}_{0}(-I) \rightarrow \overline{\mathcal{F}}_{0}(-I) / S O(3)$ is diffeomorphic to $S O(3) /\left\{I, \tau_{1}, \tau_{2}, \tau_{3}\right\}$, where $\tau_{1}, \tau_{2}, \tau_{3}$ are 180° rotations around orthogonal axes.

Focusing on the quotients $\overline{\mathcal{F}}_{0}(z) / S O(3)$, we have:
Theorem 3.24. The sets $\mathcal{M}_{0}^{0}(I)$ and $\mathcal{M}_{0}^{0}(-I)$ are discrete, and

$$
\# \mathcal{M}_{0}^{0}(I)=\frac{1}{12}\left[2^{4 g}+7 \cdot 2^{2 g}+4\right], \quad \# \mathcal{M}_{0}^{0}(-I)=\frac{1}{12}\left[16^{g}-4^{g}\right]
$$

Proof. $\# \mathcal{M}_{0}^{0}(I)=\# \overline{\mathcal{F}}_{0}(I) / S O(3)=\# F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(I) / S O(3)$ is obtained by adding up the $\# F_{0 j}^{\prime} \cap \tilde{K}_{g}^{-1}(I) / S O(3)$ (which are given in (3.22c) and (3.22d). For $\mathcal{M}_{0}^{0}(-I)=$ $\overline{\mathcal{F}}_{0}(-1) / S O(3)=F_{0}^{\prime} \cap \tilde{K}_{g}^{-1}(-I) / S O(3)$, we use (3.22e) and (3.22c).

4. Some technical facts

In this section we record some technical facts used elsewhere in this paper.
Lemma 4.1. Let X, Y be vector spaces, and $L_{1}, L_{2}: X \rightarrow Y$ surjective linear maps such that

$$
\begin{equation*}
\operatorname{ker}\left(L_{1}\right)+\operatorname{ker}\left(L_{2}\right)=X \tag{4.1a}
\end{equation*}
$$

Then

$$
\begin{equation*}
L_{1}\left(\left[\operatorname{ker}\left(L_{1}+L_{2}\right)\right]\right)=Y \tag{4.1b}
\end{equation*}
$$

Proof. Condition (4.1a), together with the fact that L_{1} and L_{2} are surjective, implies that L_{1} maps ker L_{2} onto Y. Similarly, $L_{2}\left(\operatorname{ker} L_{1}\right)=y$. Let $y \in Y$. We can choose $x_{1} \in \operatorname{ker} L_{2}$ and $x_{2} \in \operatorname{ker} L_{1}$ such that $L_{1} x_{1}=y$ and $L_{2} x_{2}=-Y$. Let $x=x_{1}+x_{2}$. Then $L_{1} x=y$ and $L_{2} x=-y$. So $x \in \operatorname{ker}\left(L_{1}+L_{2}\right)$.

Application of Lemma 4.1. We used Lemma 4.1 in the proofs of Proposition 2.7. Let $g \geq 2$, and consider the maps $C_{r}: G^{2 g} \rightarrow G:\left(x_{1}, y_{1}, \ldots, x_{g}, y_{g}\right) \mapsto y_{r}^{-1} x_{r}^{-1} y_{r} x_{r}$, and $K=C_{g} \ldots C_{1}$, and $K^{\prime}=C_{g} \ldots C_{2}$. We will show that C_{1} restricted to the submanifold
$\mathcal{F}^{1}(h)=C_{1}^{-1}(G \backslash\{I, h\}) \cap K_{g}^{-1}(h)$ is a submersion, for any $h \in G$. Working at a fixed point on $\mathcal{F}^{1}(h)$, let

$$
L_{1}=C_{1}^{-1} \mathrm{~d} C_{1}, \quad L_{2}=\left(\operatorname{Ad} C_{1}^{-1}\right) K^{\prime-1} \mathrm{~d} K^{\prime}
$$

Then $\operatorname{ker} L_{2} \supset \underline{g} \oplus \underline{g} \oplus\{0\} \oplus \cdots \oplus\{0\}$, and $\operatorname{ker} L_{1} \supset\{0\} \oplus\{0\} \oplus \underline{g} \oplus \cdots \oplus \underline{g}$, and so $\operatorname{ker} L_{1}+\operatorname{ker} L_{2}=\underline{g}^{\underline{2 g}}$. Moreover, by Lemma 2.4(ii), at any point in $\mathcal{F}^{1}(h), L_{1}$ and L_{2} are surjective. Using $K=K^{\prime} C_{1}$, we have $K^{-1} \mathrm{~d} K=L_{1}+L_{2}$. So, by Lemma 4.1, this implies that $L_{1} \mid \operatorname{ker}\left(K^{-1} \mathrm{~d} K\right)$ is surjective. Since $\operatorname{ker}\left(K^{-1} \mathrm{~d} K\right)$ is the (left-translated) tangent space to $\mathcal{F}^{1}(h)$, we conclude that $C_{1} \mid \mathcal{F}^{1}(h)$ is a submersion.

4.1. Group actions on manifolds

We have used the following result several times:
Proposition 4.2. Let G be a compact Lie group, M a smooth manifold, $M \times G \rightarrow M$: $(m, g) \mapsto m g$ a free smooth right action, and let $p: M \rightarrow M / G$ be the corresponding quotient map onto the quotient space M / G. Then there is a (unique) smooth manifold structure on M / G for which p is a submersion; with this structure on M / G, the projection $p: M \rightarrow M / G$, along with the action of G on M, is a smooth principal G-bundle.

This result is proved in $[1,16.14 .1$ and 16.10 .3$]([1,16.10 .3]$ is stated with the hypothesis that $\{(m, m g): m \in M, g \in G\}$ is a closed submanifold of $M \times M$; this condition may be verified by examining the map $f: M \times G \rightarrow M \times M:(m, g) \mapsto(m, m g)$ and using the compactness of G along with the hypothesis that the action of G on M is free; f is a smooth one-to-one immersion and its image is closed in M^{2}).

Lemma 4.3. Let G be a compact Lie group acting smoothly and isometrically on a Riemannian manifold M :

$$
G \times M \rightarrow M:(x, m) \mapsto \gamma_{m}(x)=x m .
$$

Suppose that the isotropy group is the same subgroup $H \subset G$ at every point of M. Fix an Ad-invariant metric on the Lie algebra \underline{g} of G, and let ht be the Lie algebra of H. Let $\mathrm{d} \gamma_{m}: \underline{g} \rightarrow T_{m} M$ be the derivative of γ_{m} at the identity in G. Then

$$
\begin{equation*}
m \mapsto\left|\operatorname{det}\left(\mathrm{~d} \gamma_{m} \mid \underline{h}^{\perp}: \underline{h}^{\perp} \rightarrow T_{m} M\right)\right| \tag{4.2a}
\end{equation*}
$$

is a G-invariant function of m, thus defining a function $|\operatorname{det} d \gamma| \underline{h}^{\perp} \mid$ on M / G.
If f is any G-invariant Borel function on M, then

$$
\begin{equation*}
\int_{M} f \mathrm{dvol}_{M}=\operatorname{vol}(G / H) \int_{M / G} \tilde{f}|\operatorname{det} \mathrm{~d} \gamma| \underline{h}^{\perp} \mid \operatorname{dvol}_{M / G} \tag{4.2b}
\end{equation*}
$$

(either side existing if the other does) where vol denotes Riemannian volume on the appropriate spaces (taken as counting measure when the space is discrete), and \tilde{f} is the function
on M / G induced by f. (In particular, if H is finite then (4.3b) holds with $\operatorname{vol}(G) / \# H$ for $\operatorname{vol}(G / H)$).

Proof. We shall denote the action of the derivative of $m \mapsto x m$ on $v \in T_{m} M$ by $x \cdot v$. From $\gamma_{y m}(x)=y \gamma_{m}\left(y^{-1} x y\right)$, we have $\mathrm{d} \gamma_{y m}=y \cdot \mathrm{~d} \gamma_{m} \circ \operatorname{Ad}\left(y^{-1}\right)$; thus (4.2a) is G-invariant since the G action $m \mapsto y m$ is an isometry and since the metric on g is Ad-invariant.

The isotropy group H being the same everywhere, it follows that H is a normal (closed) subgroup of G. The induced action of the group G / H on M is smooth and free, and therefore, by Proposition 4.2, $M / G \simeq M /(G / H)$ is a smooth manifold and the quotient map π : $M \rightarrow M / G$ specifies a smooth principal G / H-bundle. Consider then a G-equivariant diffeomorphism

$$
\begin{equation*}
(G / H) \times U \xrightarrow{\psi} \pi^{-1}(U), \tag{4.3a}
\end{equation*}
$$

where U is a non-empty open subset of M / G, and $\pi \psi(x H, u)=u$ for every $u \in U$ and $x \in G$. Note that G-equivariance means that $\psi(g x H, u)=\gamma_{m}(g)$ where $m=\psi(x H, u)$. We split the tangent space $T_{m} M$ into orthogonal subspaces (note that \underline{h}^{\perp} corresponds to the Lie algebra of G / H) :

$$
\begin{equation*}
T_{m} M=\mathrm{d} \gamma_{m}\left(\underline{h}^{\perp}\right)+\mathrm{d} \gamma_{m}\left(\underline{h}^{\perp}\right)^{\perp} \simeq \mathrm{d} \gamma_{m}\left(\underline{h}^{\perp}\right) \oplus T_{u}(M / G) \tag{4.3b}
\end{equation*}
$$

where the \simeq is obtained from the unitary isomorphism $\left[\mathrm{d} \gamma_{m}\left(\underline{h}^{\perp}\right)\right]^{\perp} \rightarrow T_{u}(M / G)$ given by $\mathrm{d} \pi$ (the condition that this restriction of $\mathrm{d} \pi$ is unitary defines the metric on M / G). Thus the matrix of $\mathrm{d} \psi_{(x H, u)}$ has the form

$$
\left[\begin{array}{cc}
\mathrm{d} \gamma_{m} \mid \underline{h}^{\perp} & * \tag{4.3c}\\
0 & I
\end{array}\right] .
$$

Consequently,

$$
\begin{equation*}
|\operatorname{det} \mathrm{d} \psi|_{(x H, u)}\left|=\left|\operatorname{det}\left(\mathrm{d} \gamma_{m} \mid \underline{h}^{\perp}\right)\right| .\right. \tag{4.3d}
\end{equation*}
$$

It follows that Eq. (4.3b) holds for f supported in $\pi^{-1}(U)$. By using a partition of unity argument it follows that (4.3b) holds for all compactly supported continuous G-invariant functions f. Then, by definition of the measures vol_{M} and $\mathrm{vol}_{M / G}$, Eq. (4.3b) holds for any G-invariant Borel function $f \geq 0$, and hence for any Borel f for which either side of (4.3b) exists.

5. The symplectic structure

We work with a principal G-bundle $\pi: P \rightarrow \Sigma$ over a closed oriented surface Σ of genus $g \geq 1$, where the structure group G is $S U(2)$ or $S O(3)$, equipped with an Ad-invariant metric. There is a standard symplectic structure Ω on the infinite-dimensional space \mathcal{A} of connections on P. The action on \mathcal{A} of the group \mathcal{G} of bundle automorphisms preserves the symplectic structure, and there is a moment map J whose value $J(\omega)$, for any $\omega \in \mathcal{A}$,
can be identified with the curvature of ω. The Marsden-Weinstein procedure then yields, formally, a 2-form $\bar{\Omega}$ on the moduli space of flat connections $\mathcal{M}^{0}=J^{-1}(0) / \mathcal{G}$ (a rigorous account of this presented in [7]). Now let $A_{1}, B_{1}, \ldots, A_{g}, B_{g}$ be standard loops generated $\pi_{1}(\Sigma, o)$, where o is a fixed basepoint on Σ and $\bar{B}_{g} \bar{A}_{g} B_{g} A_{g} \cdots \bar{B}_{g} \bar{A}_{g} B_{g} A_{g}$ is the identity in $\pi_{1}(\Sigma, o)$. Denoting by $h(C ; \omega)$ the holonomy of a connection ω around a loop C based at o (using a fixed reference point on the fiber $\pi^{-1}(o)$), we have the map

$$
\mathcal{H}: \mathcal{A} \rightarrow G^{2 g}: \omega \mapsto\left(h\left(A_{1} ; \omega\right), h\left(B_{1} ; \omega\right), \ldots, h\left(A_{g} ; \omega\right), h\left(B_{g} ; \omega\right)\right) .
$$

This map carries the set \mathcal{A}^{0} of flat connections onto the subset $\tilde{K}_{g}^{-1}(z)$, where

$$
\tilde{K}_{g}: G^{2 g} \rightarrow \tilde{G}:\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right) \mapsto \tilde{b}_{g}^{-1} \tilde{a}_{g}^{-1} \tilde{b}_{g} \tilde{a}_{g} \cdots \tilde{b}_{1}^{-1} \tilde{a}_{1}^{-1} \tilde{b}_{1} \tilde{a}_{1}
$$

with \tilde{x} denoting any element in the universal cover \tilde{G} of G projecting to $x \in G$, and z is a certain element of $\operatorname{ker}(\tilde{G} \rightarrow G)$ which characterizes the topology of the bundle P. In fact, \mathcal{H} induces a bijection

$$
\overline{\mathcal{H}}: \mathcal{A}^{0} / \mathcal{G} \rightarrow \tilde{K}_{g}^{-1}(z) / G
$$

where the quotient on the right is with respect to the action of G given by conjugation of each coordinate in $G^{2 g}$. We will always identify $\mathcal{M}^{0}=\mathcal{A}^{0} / \mathcal{G}$ with $\tilde{K}_{g}^{-1}(z) / G$ in this way. There is a 2 -form Ω^{\prime} on $G^{2 g}$ whose restriction to $\tilde{K}_{g}^{-1}(z)$ is the lift of the 2 -form $\bar{\Omega}$ mentioned earlier.

We will work with the group $G^{2 g}$, where $g \geq 1$ and G is either $S U(2)$ or $S O$ (3). It will be useful to label the coordinates of a point of $G^{2 g}$ with subscripts in the following way; let

$$
\begin{equation*}
J=\{1,2,5,6, \ldots, 4 g-3,4 g-2\} \tag{5.1a}
\end{equation*}
$$

Thus J is a set with $2 g$ elements; we shall take a typical point of $G^{2 g}$ to be $\left(\alpha_{j}\right)_{j \in I .}$. We then define α_{i}, for $i \in\{3,4,7,8, \ldots, 4 g-1,4 g-2\}=J+2$ by

$$
\begin{equation*}
\alpha_{j+2}=\alpha_{j}^{-1} \quad \text { for all } j \in J \tag{5.1b}
\end{equation*}
$$

A vector in the tangent space $T_{\alpha} G^{2 g}$ then has the form $\alpha \cdot H$, where $H \in \underline{g}^{2 g}$ has components $\left(H_{j}\right)_{j \in J}$; we sel

$$
\begin{equation*}
H_{j+2}=-\operatorname{Ad}\left(\alpha_{j}\right) H_{j} \quad \text { for all } j \in J . \tag{5.1c}
\end{equation*}
$$

The 2-form Ω^{\prime} on $G^{2 g}$, defined on vectors $\alpha W, \alpha Z \in T_{\alpha} G^{2 g}$ by

$$
\begin{equation*}
\Omega^{\prime}(\alpha W, \alpha Z)=\frac{1}{2} \sum_{1 \leq i, k \leq 4 g} \epsilon_{i k}\left\langle f_{i-1}^{-1} W_{i}, f_{k-1}^{-1} Z_{k}\right\rangle, \tag{5.2a}
\end{equation*}
$$

where $f_{i}=\operatorname{Ad}\left(\alpha_{i} \ldots \alpha_{1}\right)$ for each $i \in\{1, \ldots, 4 g\}, f_{0}$ is the identity map, and

$$
\epsilon_{i k}= \begin{cases}1 & \text { if } i<k \tag{5.2b}\\ -1 & \text { if } i>k \\ 0 & \text { if } i=k\end{cases}
$$

By appropriate left-translation, the derivative of K_{g} at α may be taken to be a map $\mathrm{d} K_{g}: \underline{g}^{2 g} \rightarrow \underline{g}$; denote by $\mathrm{d} K_{g}(\alpha)^{*}: \underline{g} \rightarrow \underline{g}^{2 g}$ its adjoint with respect to the metric on \underline{g}. Here are some useful properties of $\bar{\Omega}^{\prime}$ (proofs may be found in [4] or [7]):

Proposition 5.1.

(i) Ω^{\prime} is G-invariant.
(ii) $\Omega_{p}^{\prime}(A, B)$ is 0 if $A \in T_{p} G^{2 g}$ is tangent to a smooth path lying on $\tilde{K}_{g}^{-1}(z)$ and B is tangent to the G-orbit through p.
(iii) $d \Omega^{\prime}(A, B)=0$ if A, B are tangent to $\tilde{K}_{g}^{-1}(z)$.
(iv) Let $\gamma_{\alpha}: G \rightarrow \tilde{K}_{g}^{-1}(z): x \mapsto x \alpha x^{-1}$ be the orbit map. Recall the product commutator map $\tilde{K}_{g}: G^{2 g} \rightarrow \tilde{G}$. If $\alpha \in \tilde{K}_{g}^{-1}(z)$ then

$$
\begin{equation*}
\Omega_{b}^{\prime} \circ \mathrm{d} \gamma_{\alpha}=\mathrm{d} \tilde{K}_{g}(\alpha)^{*} \tag{5.3}
\end{equation*}
$$

where Ω_{b}^{\prime} is specified by $\Omega^{\prime}(X, Y)=\left\langle X, \Omega_{b}^{\prime} Y\right\rangle$.
Eq. (5.3) says that $\mathrm{d} \tilde{K}_{g}^{*}$ is like a moment map.
Recall that when $G=S U(2), K_{g}^{-1}(I)$ is the union of manifolds $\mathcal{F}_{3(2 g-2)}, \mathcal{F}_{2 g}, \mathcal{F}_{0}$, while for $G=S O(3), \tilde{K}_{g}^{-1}(z)$ is the union of manifolds $\overline{\mathcal{F}}_{3(2 g-2)}(z), \overline{\mathcal{F}}_{2 g}(z), \overline{\mathcal{F}}_{2 g-2}(z), \overline{\mathcal{F}}_{0}(z)$, where $\overline{\mathcal{F}}_{2 g}(z)$ is empty if $z=-I$. The corresponding quotients under the conjugation action of G are denoted $\mathcal{M}_{k}^{0}(z)$ (if $G=S U(2), z$ can only be I and we drop it from the notation sometimes), with $k \in\{3(2 g-2), 2 g, 2 g-2,0\}$.

Proposition 5.2. There is a unique smooth closed 2-form $\bar{\Omega}$ on each stratum of $\mathcal{M}_{k}^{0}(z)$, whose lift to each of the manifolds which make up $\tilde{K}_{g}^{-1}(z)$ is Ω^{\prime} restricted to that manifold.

Proof. As proved in Section 3 in all the separate cases, the quotient map $\tilde{K}_{g}^{-1}(z) \rightarrow$ $\tilde{K}_{g}^{-1}(z) / G$ is a fiber bundle projection over each $\mathcal{M}_{k}^{0}(z)$. Thus Ω^{\prime} can be pulled down by smooth local sections. The properties of Ω^{\prime} listed in Proposition 5.1(i) and (ii) imply that if s_{1} and s_{2} are two smooth local sections of $\tilde{K}_{g}^{-1}(z) \rightarrow \tilde{K}_{g}^{-1}(z) / G$ in a neighborhood of some point in $\mathcal{M}_{k}^{0}(z)$ then $s_{1}^{*} \Omega^{\prime}=s_{2}^{*} \Omega^{\prime}$. Thus we can define $\bar{\Omega}$ unambiguously as the 2 -form, on each $\mathcal{M}_{k}^{0}(z)$, given locally by pullbacks of Ω^{\prime} by smooth local sections of $\tilde{K}_{g}^{-1}(z) \rightarrow \tilde{K}_{g}^{-1}(z) / G$. Since $\mathrm{d} \Omega^{\prime}=0$ on $\tilde{K}_{g}^{-1}(z)$ and the fiber-bundle projection map is a submersion, it follows that $\mathrm{d} \bar{\Omega}=0$.

6. The symplectic structure on the $S U(2)$ moduli spaces \mathcal{M}_{k}^{0}

In this section we shall work with the moduli space of flat $S U(2)$ connections. The group $S U(2)$ is equipped with a fixed Ad-invariant metric (\cdot, \cdot). We will show that $\bar{\Omega}$ is a symplectic structure on $\mathcal{M}_{2 g}^{0}$ and we will determine the corresponding symplectic volumes.

It has been proven in several works ([5], for instance) that $\bar{\Omega}$ is symplectic on $\mathcal{M}_{3(2 g-2)}^{0}$ and the volume $\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{3(2 g-2)}^{0}\right)$ has also been determined in a variety of ways [3,9].

Let T be a maximal torus in $S U(2)$, and $n \in N(T) \backslash T$, where $N(T)$ is the normalizer of T in $S U(2)$. The two-element group $W=\{I, n\}$ acts freely on $T^{2 g} \backslash\{ \pm I\}^{2 g}$ by conjugation. Let $\mathcal{F}_{2 g}$ be the subset of $K_{g}^{-1}(I) \subset S U(2)^{2 g}$ consisting of all points where the isotropy group of the conjugation action of $S U(2)$ is a maximal torus in $S U(2)$. By definition, $\mathcal{M}_{2 g}^{0}=\mathcal{F}_{2 g} / S U(2)$. Recall from (2.10c) that the inclusion map $T^{2 g} \backslash\{ \pm I\}^{2 g} \subset$ $\mathcal{F}_{2 g}$ induces a diffeomorphism $\overline{\bar{\Phi}}: T^{2 g} \backslash\{ \pm I\}^{2 g} / W \rightarrow \mathcal{F}_{2 g} / S U(2)=\mathcal{M}_{2 g}^{0}$. Thus $\bar{\Omega}$ on $\mathcal{M}_{2 g}^{0}$ is simply the projection on $T^{2 g} \backslash\{ \pm I\}^{2 g} / W$ of the restriction $\Omega^{\prime} \mid T^{2 g} \backslash\{ \pm I\}^{2 g}$.

$$
\begin{array}{cccc}
T^{2 g} \backslash\{ \pm I\}^{2 g} & \xrightarrow{\text { inclusion }} & \mathcal{F}_{2 g} & \subset S U(2)^{2 g} \\
\downarrow & & \downarrow & \tag{6.1a}\\
T^{2 g} \backslash\{ \pm I\}^{2 g} / W & \xrightarrow{\bar{\Phi}} & \mathcal{F}_{2 g} / S U(2) & =\mathcal{M}_{2 g}^{0}
\end{array}
$$

Recall that we are working with a fixed Ad-invariant metric $\langle\cdot, \cdot\rangle$ on the Lie algebra of $S U(2)$, and the symplectic form $\bar{\Omega}$ is defined in terms of this metric.

Proposition 6.1.

(i) The restriction of Ω^{\prime} to $T^{2 g}$ is given on vectors $H^{(1)}, H^{(2)} \in T_{x} T^{2 g}$ by

$$
\begin{equation*}
\Omega^{\prime}\left(H^{(1)}, H^{(2)}\right)=\sum_{i=1}^{g}\left(\left\langle A_{i}^{(1)}, B_{i}^{(2)}\right\rangle-\left\langle A_{i}^{(2)}, B_{i}^{(1)}\right\rangle\right) \tag{6.1b}
\end{equation*}
$$

where $H^{(1)}=x \cdot\left(A_{1}^{(1)}, B_{1}^{(1)}, \ldots, A_{g}^{(1)}, B_{g}^{(1)}\right)$, and $H^{(2)}$ is related similarly to the $A_{i}^{(2)}$ and $B_{i}^{(2)}$.
(ii) The 2 -form $\bar{\Omega}$ on $\mathcal{C}_{2 g}^{0}$ is a symplectic form.
(iii) The volume of $\mathcal{M}_{2 g}^{0}$ with respect to the symplectic form $\bar{\Omega}$ is

$$
\begin{equation*}
\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{2 g}^{0}\right)=\frac{1}{2}[4 \pi \operatorname{vol}(S U(2))]^{2 g / 3} \tag{6.1c}
\end{equation*}
$$

where $\operatorname{vol}(S U(2))$ is the volume of $S U(2)$ with repect to the metric (\cdot, \cdot).
Proof. Since each component of x is in T, it follows that, in the notation of Eq. (6.1b), $f_{i-1}^{-1}(X)=X$ for every $i \in\{1, \ldots, 4 g\}$ and every $X \in \underline{t}$, the Lie algebra of T. Morcover, in (5.2a), W and Z have the form $\left(A_{1}^{(i)}, B_{1}^{(i)},-A_{1}^{(i)},-B_{1}^{(i)}, \ldots, A_{g}^{(i)}, B_{g}^{(i)},-A_{g}^{(i)},-B_{g}^{(i)}\right)$. Using this in (5.2a) we see that the term involving $A_{i}^{(1)}$ is:

$$
\begin{aligned}
& \frac{1}{2}\left\langle A_{i}^{(1)}, 0+B_{i}^{(2)}-A_{i}^{(2)}-B_{i}^{(2)}+0\right\rangle \\
& \quad+\frac{1}{2}\left\langle-A_{i}^{(1)}, 0-A_{i}^{(2)}-B_{i}^{(2)}-B_{i}^{(2)}+0\right\rangle=\left\langle A_{i}^{(1)}, B_{i}^{(2)}\right\rangle .
\end{aligned}
$$

Similarly, the term involving $B_{i}^{(1)}$ in Eq. (5.2a) equals $-\left\langle B_{i}^{(1)}, A_{i}^{(2)}\right\rangle$. Adding up over $i=1, \ldots, g$ yields Eq. (6.1b).

We can see directly from (6.1b) that $\Omega^{\prime} \mid T^{2 g}$ is invariant under W and thus induces a 2-form $\bar{\Omega}$ on the quotient $\simeq \mathcal{M}_{2 g}^{0}$. Moreover, the 2 -form $\Omega^{\prime} \mid T^{2 g}$ given in (6.1b), being a left invariant form on the abelian group $T^{2 g}$, is closed; expression (6.1b) also shows that it is non-degenerate. Since the quotient map $\left(T^{2 g} \backslash\{ \pm I\}\right) \rightarrow \mathcal{M}_{2 g}^{0}$ is a local diffeomorphism, we conclude that $\bar{\Omega}$ is also a symplectic form.

From (6.1b) we see that the matrix for $\Omega^{\prime} \mid T^{2 g}$ relative to a suitable orthonormal basis has block-diagonal form, with each block being

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

thus $\left|\operatorname{det}\left(\Omega^{\prime} \mid T^{2 g}\right)\right|=1$, and so

$$
\operatorname{vol}_{\Omega^{\prime} \mid T^{2 g}}\left(T^{2 g} \backslash\{ \pm I\}^{2 g}\right)=\operatorname{vol}_{\Omega^{\prime} \mid T^{2 g}}\left(T^{2 g}\right)=\operatorname{vol}(T)^{2 g}
$$

where the last term is the Riemannian volume (=length) of T. Now $S U(2)$, being a 3sphere has volume $=2 \pi^{2}(\text { radius })^{3}$, while T, being a great circle in this sphere, has length 2π (radius). Thus

$$
\begin{equation*}
\operatorname{vol}(T)=2 \pi\left[\frac{\operatorname{vol}(S U(2))}{2 \pi^{2}}\right]^{1 / 3}=[4 \pi \operatorname{vol}(S U(2))]^{1 / 3} \tag{6.1d}
\end{equation*}
$$

and so

$$
\operatorname{vol}_{\Omega^{\prime} \mid T^{2 g}}\left(T^{2 g} \backslash\{ \pm I)^{2 g}\right)=[4 \pi \operatorname{vol}(S U(2))]^{2 g / 3}
$$

Since $T^{2 g} \backslash\{ \pm I\} \rightarrow \mathcal{M}_{2 g}^{0}$ is a two-fold cover, we have the result (6.1c).

7. The symplectic structure on the $S O(3)$ moduli spaces $\mathcal{M}_{k}^{0}(z)$

The determination of the symplectic volumes of the different strata $\mathcal{M}_{k}^{0}(z)$ will require different methods.

7.1. $\bar{\Omega}$ on $\mathcal{M}_{2 g}^{0}(I)$

The stratum $\mathcal{M}_{2 g}^{0}(I)$ can be understood in a way very similar to $\mathcal{M}_{2 g}^{0}$.
Let T be a maximal torus in $S U(2)$, and \bar{T} its projection on $S O(3)$. Let $n \in N(\bar{T}) \backslash \bar{T}$, where $N(\bar{T})$ is the normalizer of \bar{T} in $S O(3)$. The two-element group $W=\{I, n\}$ acts freely on $\bar{T}^{2 g} \backslash\{I\}^{2 g}$ by conjugation. Let $\overline{\mathcal{F}}_{2 g}(I)$ be the subset of $\tilde{K}_{g}^{-1}(I) \subset S O(3)^{2 g}$ consisting
of all points where the isotropy group of the conjugation action of $S O(3)$ is a maximal torus in $S O(3)$. By definition, $\mathcal{M}_{2 g}^{0}(I)=\overline{\mathcal{F}}_{2 g}(I) / S O(3)$.

Let τ be the 180° rotation belonging to \bar{T}. Recall, from Theorem 3.9, the commutative diagram

$$
\begin{array}{cccc}
\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g} & \xrightarrow{\text { inclusion }} & \overline{\mathcal{F}}_{2 g}(I) & \subset S O(3)^{2 g} \\
\downarrow & & \downarrow & \tag{7.1a}\\
\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g} / W & \longrightarrow & \overline{\mathcal{F}}_{2 g}(I) / S O(3) & =\mathcal{M}_{2 g}^{0}(I)
\end{array}
$$

where the lower horizontal arrow is a diffeomorphism.
Thus $\bar{\Omega}$ on $\mathcal{M}_{2 g}^{0}(I)$ is, via the lower horizontal arrow in (7.1a), identifiable as the projection on $\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g} / W$ of the restriction of Ω^{\prime} to $\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g}$ (the projection $\bar{T}^{2 g} \backslash\{I, \tau\}^{2 g} \rightarrow \bar{T}^{2 g} \backslash\{I, \tau\}^{2 g} / W$ is a 2-fold covering).

Recall that we are working with a fixed Ad-invariant metric $\langle\cdot, \cdot\rangle$ on the Lie algebra of $S U(2)$, and the symplectic form $\bar{\Omega}$ is defined in terms of this metric.

Proposition 7.1.

(i) The restriction of Ω^{\prime} to $\bar{T}^{2 g}$ is given on vectors $H^{(1)}, H^{(2)} \in T_{x} \bar{T}^{2 g}$ by

$$
\begin{equation*}
\Omega^{\prime}\left(H^{(1)}, H^{(2)}\right)=\sum_{i=1}^{g}\left(\left\langle A_{i}^{(1)}, B_{i}^{(2)}\right\rangle-\left\langle A_{i}^{(2)}, B_{i}^{(1)}\right\rangle\right) \tag{7.1b}
\end{equation*}
$$

where $H^{(1)}=x \cdot\left(A_{1}^{(1)}, B_{1}^{(1)}, \ldots, A_{g}^{(1)}, B_{g}^{(1)}\right)$, and $H^{(2)}$ is related similarly to the $A_{i}^{(2)}$ and $B_{i}^{(2)}$.
(ii) The 2-form $\bar{\Omega}$ on $\mathcal{M}_{2 g}^{0}$ (I) is a symplectic form.
(iii) The volume of $\mathcal{M}_{2 g}^{0}(I)$ with respect to the symplectic form $\bar{\Omega}$ is

$$
\begin{equation*}
\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{2 g}^{0}(I)\right)=\frac{1}{2}\left[\frac{\pi}{2} \operatorname{vol}(S U(2))\right]^{2 g / 3} \tag{7.1c}
\end{equation*}
$$

where $\operatorname{vol}(S U(2))$ is the volume of $S U(2)$ with repect to the metric (\cdot, \cdot).
Proof. The argument is virtualiy the same as in Proposition 6.1. For (iii), we need to observe, in addition, that

$$
\left.\operatorname{vol}_{\Omega^{\prime} \mid \bar{T}^{2 g}} \bar{T}^{2 g} \backslash\{ \pm I\}^{2 g}\right)=\operatorname{vol}_{\Omega^{\prime} \mid \bar{T}^{2 g}}\left(\bar{T}^{2 g}\right)=\operatorname{vol}(\bar{T})^{2 g}=\frac{1}{2^{2 g}} \operatorname{vol}(T)^{2 g}
$$

where the last equality follows from the fact that $S U(2) \rightarrow S O(3)$ is a 2-fold covering and a local isometry.
7.2. $\bar{\Omega}$ on $\mathcal{M}_{2 g-2}^{0}(z)$

Recall that $\mathcal{M}_{2 g-2}^{0}(z) \simeq\left(\tilde{K}_{g}^{-1}(z) \cap F\right) / S O(3)$, where F is the subset of $S O(3)^{2 g}$ consisting of points where the isotropy group of the $S O$ (3)-conjugation action is a
two-element group. Let \bar{T} be a maximal torus in $S O(3), N(\bar{T})$ its normalizer, and B the subset of $N(\bar{T})^{2 g}$ where the isotropy group is not a two-element group (described in detail in (3.11 c), and (3.11 d). We have the commutative diagram

$$
\begin{array}{ccc}
\tilde{K}_{g}^{-1}(z) \cap\left(N(\bar{T})^{2 g} \backslash B\right) & \stackrel{\text { inclusion }}{ } & \tilde{K}_{g}^{-1}(z) \cap F \\
\downarrow p & \downarrow p^{\prime} \tag{7.2a}\\
{\left[\tilde{K}_{g}^{-1}(z) \cap\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})} & \xrightarrow{\bar{\Psi}} & \left(\tilde{K}_{g}^{-1}(z) \cap F\right) / S O(3) \simeq \mathcal{M}_{2 g-2}^{0}(z)
\end{array}
$$

where the bottom arrow is a diffeomorphism.
Let $N^{\prime}(\bar{T})=N(\bar{T}) /\{I, \tau\}$, where τ is the 180° rotation in \bar{T}. The vertical arrow on the left in (7.2a) is a fiber bundle projection, and in fact it is a principal $N^{\prime}(\bar{T})$-bundle. Thus $\bar{\Omega} \mid \mathcal{M}_{2 g-2}^{0}(z)$ is the 2 -form induced via p by $\Omega^{\prime} \mid \tilde{K}_{g}^{-1}(z) \cap\left(N(\bar{T})^{2 g} \backslash B\right)$.

Since the conjugation action of $N(\bar{T})$ on $N(\bar{T})^{2 g}$ is by isometries, the fiber bundle projection p induces, in a natural way, a Riemannian metric on $\left[\tilde{K}_{g}^{-1}(z) \cap\left(N(\bar{T})^{2 g} \backslash B\right)\right] / N(\bar{T})$. We shall equip $\mathcal{M}_{2 g-2}^{0}(z)$ with the corresponding Riemannian metric induced via $\overline{\bar{\Psi}}$. (A vector in some $T_{p} N(\bar{T})^{2 g}$ which is perpendicular to the $N(\bar{T})$-orbit through p is automatically perpendicular to the $S O$ (3)-orbit through p; thus $\overline{\bar{\Psi}}$ is an isometry when the domain and image of $\overline{\bar{\Psi}}$ are equipped with the quotient metrics).

We work with $J=\{1,2,5,6, \ldots, 4 g-3,4 g-2\}$, as in (5.1a).
For $S \subset J$, recall from (3.16a) and (3.16b) the map $\phi_{S}: \bar{T}^{2 g} \rightarrow N(\bar{T})^{2 g}$. If $\alpha \in \phi_{S}\left(\bar{T}^{2 g}\right)$ then, by definition of ϕ_{S},

$$
\alpha_{j} \in \begin{cases}\bar{T} & \text { if } j \in S, \tag{7.2b}\\ N(\bar{T}) \backslash \bar{T} & \text { if } j \in J \backslash S .\end{cases}
$$

Thus, for $\alpha \in \phi_{S}\left(\bar{T}^{2 g}\right)$,

$$
\operatorname{Ad}\left(\alpha_{j}\right) \left\lvert\, \underline{t}= \begin{cases}I & \text { if } j \in S, \tag{7.2c}\\ -I & \text { if } j \in J \backslash S .\end{cases}\right.
$$

where I is the identity map on \underline{t}.
We have the orbit map $\gamma_{\alpha}: N(\bar{T}) \rightarrow N(\bar{T})^{2 g}: x \mapsto x \alpha x^{-1}$, whose derivative, at the identity in \underline{t}, is given by a linear map $\mathrm{d} \gamma_{\alpha}: \underline{t} \rightarrow \underline{t}^{2 g}$. On the other hand, we have the product commutator map $\tilde{K}_{g}: \bar{T}^{2 g} \rightarrow T$, whose derivative is described by a linear map $\left.\mathrm{d} \tilde{K}_{g}\right|_{\alpha}: \underline{t}^{2 g} \rightarrow \underline{t}$ (all tangent vectors left-translated to the identity).

Lemma 7.2. For any $S \subset J$, and $\alpha \in \phi_{S}(\bar{T})^{2 g}$,

$$
\begin{equation*}
\operatorname{det}\left(\mathrm{d} \gamma_{\alpha} \mid t\right)=2 \sqrt{2 g-\# S}=\operatorname{det}\left(\left.\mathrm{d} \tilde{K}_{g}\right|_{\alpha} ^{*} \underline{t}\right) \tag{7.2d}
\end{equation*}
$$

Proof. Differentiating the expression $\gamma_{\alpha}(x)=x \alpha x^{-1}$ at x equal to the identity, we have for any $X \in \underline{t}$:

$$
\mathrm{d} \gamma_{\alpha}(X)=\left(\left[\operatorname{Ad}\left(\alpha_{j}^{-1}\right)-1\right] X\right)_{j \in J}
$$

Thus, by (7.2c), the j th entry of $\mathrm{d} \gamma_{\alpha}(X)$ is 0 if $j \in S$ and it is $-2 X$ if $j \in J \backslash S$. Thus $\operatorname{det} \mathrm{d} \gamma_{\alpha} \mid \underline{t}=2 \sqrt{\#(J \backslash S)}=2 \sqrt{2 g-\# S}$.
Recall that we write α as $\left(\alpha_{j}\right)_{j \in J}$, where $J=\{1,2,5,6, \ldots, 4 g-3,4 g-2\}$. Then $\tilde{K}_{g}(\alpha)=\tilde{\alpha}_{4 g} \tilde{\alpha}_{4 g-1} \cdots \tilde{\alpha}_{1}$, where, for each $j \in J, \tilde{\alpha}_{j+2}=\tilde{\alpha}_{j}^{-1}$ and $\tilde{\alpha}_{j} \in T \subset S U(2)$ is any element covering α_{j}. Then

$$
\tilde{K}_{g}(\alpha)^{-1} \mathrm{~d} \tilde{K}_{g}(\alpha H)=\sum_{j \in J}\left(f_{j-1}^{-1}-f_{j+2}^{-1}\right) H_{j}
$$

where $f_{j}=\operatorname{Ad}\left(\alpha_{j} \alpha_{j-1} \cdots \alpha_{1}\right)$. Taking the adjoint, we have

$$
\begin{equation*}
\left.\mathrm{d} \tilde{K}_{g}\right|_{\alpha} ^{*} X=\left(\left(f_{j-1}-f_{j+2}\right) X\right)_{j \in J} \tag{7.2e}
\end{equation*}
$$

here we are working with $X \in \underline{t}$, in which case $\left.\mathrm{d} \tilde{K}_{g}\right|_{\alpha} ^{*} X \in \underline{t}^{2 g}$ (the formulas are all valid for \underline{g} in place of $\underline{t})$. Since $\operatorname{Ad}\left(\alpha_{i}\right) \mid \underline{t}= \pm I$, the different $\operatorname{Ad}\left(\alpha_{i}\right) \mid \underline{t}$'s commute, and so, for any $j \in J$:

$$
\begin{aligned}
f_{j+2} & =\operatorname{Ad}\left(\alpha_{j+2} \alpha_{j+1} \alpha_{j}\right) f_{j-1} \\
& =\operatorname{Ad}\left(\alpha_{j}^{-1} \alpha_{j+1} \alpha_{j}\right) f_{j-1} \\
& =\operatorname{Ad}\left(\alpha_{j+1}\right) f_{j-1}= \begin{cases}f_{j-1} & \text { if } j+1 \in S \cup(S+2), \\
-f_{j-1} & \text { otherwise },\end{cases}
\end{aligned}
$$

where in the last step we used (7.2c) and $\alpha_{j+2}=\alpha_{j}^{-1}$. Thus

$$
j \text { th component of }\left.d \tilde{K}_{g}\right|_{\alpha} ^{*} X \text { is }= \begin{cases}0 & \text { if } j+1 \in S \cup(S+2) \\ 2 f_{j-1} X= \pm 2 X & \text { otherwise }\end{cases}
$$

Thus

$$
\operatorname{det}\left(\left.\mathrm{d} \tilde{K}_{g}\right|_{\alpha} ^{*}\right)=2 \sqrt{2 g-\# S^{\prime}}
$$

where $S^{\prime}=\{j \in J: j+1 \in S \cup(S+2)\}$. Now the mapping $f: S^{\prime} \rightarrow S: j \mapsto f(j)$, where $f(j)=j \pm 1$ according as $j \pm 1 \in S$, is a bijection, So $\# S^{\prime}=\# S$, and so $\operatorname{det}\left(\left.\mathrm{d} \tilde{K}_{g}\right|_{\alpha} ^{*}\right)$ is as in (7.2d).

Proposition 7.3. The 2 -form $\bar{\Omega} \mid \mathcal{M}_{2 g-2}^{0}(z)$ is symplectic. Moreover, on $\mathcal{M}_{2 g-2}^{0}(z)$

$$
\begin{equation*}
\operatorname{Pfaffian}(\bar{\Omega})=1 \tag{7.3a}
\end{equation*}
$$

i.e. the volume measure on $\mathcal{M}_{2 g-2}^{0}(z)$ induced by the symplectic form $\bar{\Omega}$ is the same as the Riemannian volume measure.

Proof. It is proved in [5] that

$$
\begin{equation*}
\operatorname{Pfaffian}(\bar{\Omega})=\frac{\operatorname{det} \mathrm{d} \gamma_{\alpha} \mid \underline{t}}{\left.\operatorname{det} \mathrm{~d} \tilde{K}_{g}\right|_{\alpha} ^{*} \underline{t}} \tag{7.3b}
\end{equation*}
$$

(The argument in [5] is for \underline{g} and $\bar{\Omega} \mid \mathcal{M}_{3(2 g-2)}^{0}(z)$ but is valid without any change in the present simpler situation.) The result now follows from Lemma 7.2.

Proposition 7.4. The symplectic volume, with respect to the symplectic structure $\bar{\Omega}$, of each connected component of $\mathcal{M}_{2 g-2}^{0}(z)$ is $\frac{1}{2}[\pi \operatorname{vol}(S U(2)) / 2]^{(2 g-2) / 3}$.

Proof. Recall from Theorem 3.20 that $\mathcal{M}_{2 g-2}^{0}(z)$ is the union of $2^{2 g}-1$ connected components $\mathcal{M}_{2 g-2}^{0}(z)_{S}$, one for each proper subset S of $J=\{1,2,5,6, \ldots, 4 g-3,4 g-2\}$, and $\mathcal{M}_{2 g-2}^{0}(z)_{S} \simeq\left(\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z) \backslash B_{S}\right) / N^{\prime}(\bar{T})$.

Since the symplectic volume measure vol $_{\bar{\Omega}}$ coincides with the Riemannian volume measure on $\mathcal{M}_{2 g-2}^{0}(z)$, it follows from Lemma 4.3 and the determinant values in (7.2d) that

$$
\begin{equation*}
\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{2 g-2}^{0}(z)_{S}\right)=\frac{1}{\operatorname{vol}\left(N^{\prime}(\bar{T})\right)} \frac{1}{2 \sqrt{2 g-\# S}} \operatorname{vol}\left[\tilde{K}_{g}^{-1}(z) \cap \phi_{S}\left(\bar{T}^{2 g} \backslash B_{S}\right)\right] \tag{7.4a}
\end{equation*}
$$

where vol (with no subscript) is Riemannian volume.
Since ϕ_{S} is an isometry and B_{S} is a submanifold of positive codimension in $\bar{T}^{2 g}$, it follows that the Riemannian volume appearing on the right side in (7.4a) equals the Riemannian volume of $\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z)$.

Now, as observed in Proposition 3.17,

$$
\begin{equation*}
\left(\tilde{K}_{g} \circ \phi_{S}\right)\left(t_{j}\right)_{j \in J}=\prod_{j \in J} \tilde{t}_{j}^{m_{j}} \tag{7.4b}
\end{equation*}
$$

where \tilde{t}_{j} is any element of T covering $t_{j} \in \bar{T}$, and, for $j=1,5, \ldots, 4 g-3$,

$$
\left(m_{j}, m_{j+1}\right)= \begin{cases}(0,0) & \text { if } j, j+1 \in S \tag{7.4c}\\ (2,0) & \text { if } j \in S \text { and } j+1 \notin S \\ (0,-2) & \text { if } j \notin S \text { and } j+1 \in S, \\ (-2,2) & \text { if } j \notin S \text { and } j+1 \notin S\end{cases}
$$

Fixing a $j_{*} \in J \backslash S$, the map $\bar{T}^{2 g} \rightarrow \bar{T}^{2 g-1}$ which carries $\left(x_{j}\right)_{j \in J}$ to the projection $\left(x_{j}\right)_{j \in J, j \neq j_{*}}$ is a bijection of $\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z)$ onto $\bar{T}^{2 g-1}$. The Jacobian of the inverse $\operatorname{map} \bar{T}^{2 g-1} \rightarrow\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z)$ is $\left(1 /\left|m_{j_{*}}\right|\right) \sqrt{\sum_{j \in J} m_{j}^{2}}$. The specification of the m_{j} above shows that this Jacobian equals $\sqrt{\#(J \backslash S)}$. So

$$
\begin{equation*}
\operatorname{vol}\left(\left(\tilde{K}_{g} \circ \phi_{S}\right)^{-1}(z)\right)=\sqrt{2 g-\# S} \operatorname{vol}\left(\bar{T}^{2 g-1}\right) \tag{7.4d}
\end{equation*}
$$

Substituting this into (7.4a), and using $\operatorname{vol}(\bar{T})=\frac{1}{2} \operatorname{vol}(T)$, as well as the value of $\operatorname{vol}(T)$ mentioned in (6.1d) we have

$$
\begin{aligned}
\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{2 g-2, S}^{0}(z)\right) & =\frac{1}{\operatorname{vol}(\bar{T})} \frac{1}{2 \sqrt{2 g-\# S}} \sqrt{2 g-\# S} \operatorname{vol}\left(\bar{T}^{2 g-1}\right) \\
& =\frac{1}{2} \operatorname{vol}(\bar{T})^{2 g-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{2} 2 \pi\left(\frac{\operatorname{vol}(S U(2))}{2 \pi^{2}}\right)^{1 / 3}\right]^{2 g-2} \\
& =\frac{1}{2}\left[\frac{\pi}{2} \operatorname{vol}(S U(2))\right]^{(2 g-2) / 3}
\end{aligned}
$$

Acknowledgements

The author gratefully acknowledges support, received at various stages of this work, from NSF Grants DMS 9400961 and DMS 9800955, US Army Research Office \#DAAH04-94-G-0249, and from the Alexander von Humboldt Foundation.

References

[1] J. Dicudonne, Treatise on Analysis, vols. III and IV, transl.: I.G. Macdonald, Academic Press, New York, 1972.
[2] D. Fine, Yang-Mills on a Riemann Surface, Commun. Math. Phys. 140 (1991) 321-338.
[3] L.C. Jeffrey, J. Weitsman, Toric structures on the moduli space of fat connections on a Riemann surface: volumes and the moment map, Adv. Math, 106 (1994) 151-168.
[4] C. King, A. Sengupta, An explicit description of the symplectic structure of moduli spaces of flat connections, J. Math. Phys. 10 (1994) 5338-5353.
[5] C. King, A. Sengupta, The semiclassical limit of the two dimensional quantum Yang-Mills model, J. Math. Phys. 10 (1994) 5354-5361.
[6] A. Sengupta, The semiclassical limit of $S U(2)$ and $S O(3)$ gauge theory on the torus, Commun. Math. Phys. 169 (1995) 297-314.
[7] A. Sengupta, The Moduli space of Yang-Mills connections over a compact surface, Rev. Math. Phys. 9 (1997) 77-121.
[8] A. Sengupta, A Yang-Mills inequality for compact surface, Infinite Dimensional Analysis, Quantum Prob., Related Topics 1(1998) 1-16.
[9] E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991) 153-209.
[10] E. Witten, Two dimensional quantum gauge theory revisited, J. Geom. Phys. 9 (1992) 303-368.

[^0]: ${ }^{1}$ E-mail: sengupta@math.lsu.edu

