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Abstract

All the connected components of the moduli space of flat connections on SU(2) and SO(3) (trivial
and non-trivial) bundles over closed oriented surfaces are determined. The symplectic structure and
volumes of the non-maximal strata of the moduli space are also determined. © 1998 Elsevier Science
B.V.
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1. Introduction

In this paper we shall study the moduli space MY of flat connections on principal G-
bundles over closed orientable surfaces, where G is SU(2) or SO(3).

Each moduli space is made up of several strata M, each of which is a smooth k-
dimensional manifold. In the case of SO (3), the moduli space of flat connections on the
trivial bundle is denoted M®(I) (and the strata Mg([ )), and the corresponding space for
the non-trivial bundle is denoted M%(—1) (and the strata Mg(—[ )). The detailed structure
of the individual strata are described in Theorems 2.1, 3.1, 3.2, 3.7, 3.9, 3.20 and 3.24.

There is a standard symplectic structure on the infinite dimensional space of all connec-
tions over a closed oriented surface. It is known that this induces a symplectic structure
on the maximal stratum of M. In Section 6 we prove that a symplectic structure is also
induced on each of the lower-dimensional strata of M°. The volume of the maximal stratum
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Table 1
Group/bundle Stratum Number of components Volume
SU (2)trivial bundle Mg(ngZ) 10ifg = 1) 2ol (SU ()22
x Y L
n=1 plg=2
M), 1 1 [4mvol (SU(2))12/3
0 2
M, 22¢
Mg(Zg—Z)(I ) 10ifg = 1) 21-28yol (SU(2))282
oc 1
X2 )
ivi 2g/3
SO (3)trivial bundle MI (D) 1 } [motsuan] 8/
3 (2—2)/3
M3 (D) 228 — 1(0if g = 1) | [regvan)
M) 2% +7.2% 1 4]
SO() non-trivial bundle M3, , (-  1(Qifg=1) 21280l (SU(2))262
0 (_l)rH—l
XD opel T
0 2 o= | [avol (SU@)) 128273
M3, =D 228 — 1(0ifg =1) | [reolsuen]
My(=D) Hl168 — 48]

Note: Mg(z) is the stratum of dimension k.

of MY has been determined in other works ([3,9], for instance). In Section 7 we work out
the volumes of the lower-dimensional strata Mg (2), for SU(2) and SO(3).

Table 1 gives a summary of some of the results of this paper (the volumes of the maximal
strata are not computed in the present work; see [9, (3.26,28),(4.73))).

References to the literature on flat connections over surfaces may be found in [2,3,9,10].

2. The moduli space of flat SU (2) connections

Let X be a compact connected oriented two-dimensional manifold of genus g > 1. As
is well known, the moduli space MO of flat SU(2) connections over X may be identified
with the quotient K - L/SU(2), where K ¢ 18 the product commutator map

Ky : SU@* — SUQ): (a1, b1, ..., a5,by) > by 'a;'beag .. b 'a; ' biay,
@2.1)

and SU(2) acts on K, 1(I) by conjugation in each component (Section 5 has some detail
on this identification). In this section we shall use this identification of MO, along with
its topology and smooth structure, with K ¢ 1(I)/SU(2). The main result of this section
is:
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Theorem 2.1. The moduli space M is connected.
Moreover MO is the union of disjoint sets M

(2g—
(1\ AM isemptvifeo =1 w 22 it mooth connected m nifnld Af

) 47.3(25, g isemptyif g = 1, whi
dimension 3(2g — 2);
(i1} M(z) o is a smooth connected 2g-dimensional manifold, diffeomorphic to the quotient

(SH28\{£1}%8 /W, where S is the usual circle group of unit modulus complex num-
bers, and W is a two-element group {I,n} acting on (§")?8 byn - (zy,..., 2g) =
@'z,

(iii) Mg is a set consisting of 2°¢ points.

The proof of this will be completed by combining several results we shall prove below.
However, we shall sketch first the general outline of the argument. The conjugation action
of SU(2) on SU (2)28 carries K 3 (1) into itself and we may decompose K 3 Ne)) according
to the type of isotropy groups:

K7 (1) = Fapg—z) U Fag U (£}, (22)

where

(i) F3(2¢—2) is the set of points where the isotropy group is {+7}, and

(ii) JFag the set of points where the isotropy group is a torus in SU (2).
‘We have then the corresponding decomposition

M = M, 5 UM, UM, (2.3)
where

M e 2 = Fag-/SUQ@) and M3, = For /SU(2), (2.4)
The connectivity of MC and the structures of the strata Mg(2 2-2) and Mg 2 will be obtained

by analyzing the sets I{g_1 (I), F32g—2), and Fa,.

2.1. The isotropy groups

The following simplé result (Section 3.7 in [11], Proposition B.III in [4]) is very
useful:

Lemma 2.2. Let H be a compact connected Lie group, equipped with an Ad-invariant
metric. Consider the map

kr: H — H : X1y Y1y ooy Xr, Yr) B> yr“lx,_lyrxr...yl_lxl_lylxl,
and the conjugation action of H on H 2 given by (writing x = (X1, ¥1, -- ., Xr, ¥r)):

H x H” — HY . (a,x) > y(a) = (axla—l,ayla_l,...,ax,a_l,ay,a_l).
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For x € H, let Z(x) be the set of elements of H which commute with x. Thus the isotropy
group I, of the action of H at x = (x1,y1,...,Xr, yr) isequal to Z(x)) N Z(yy)N---N
Z(x;) N Z(y,). Then

ker(dk,|7) = Lie algebra of Z, = kerdyy|,

(where e is the identity element of H).

The following describes the isotropy groups of the conjugation action of SU(2) on
SUQ)*.

Lemma 2.3. Let x = (x1,..., %) € SUQ2)*. The isotropy group at x of the action of
SU(2) on SU2)* is either SU(2), or a maximal torus T, or {£I}:

SU(2) if eachx; € {£1};
a maximal torus T if all the x;, x; commute with
each other (thereby all lying in a
maximal torus T) but are not all + I,
{1} if there exist two elements in
{x1, ..., xg)which do not commute.

the isotropy group = 1

Proof. The case where the isotropy group is SU (2) is clear. The other cases may be deduced
from the following observations. If a, b € SU(2), b # %1, and ab = ba, then a belongs to
the maximal torus containing b; this is readily verified by taking b to be a diagonal matrix.
On the other hand, suppose ab # ba, and considerx € Z(a)NZ(b), x # LI ; then, taking a
to be diagonal, we see that, since a # +/, x is also diagonal and, since x # =1, this implies
that b is diagonal, thus contradicting ab # ba. Thus Z(a) N Z(b) = {£I}ifab # ba. O

2.2. The product commutator map
We list some useful observations about the product commutator map:
Lemma 2.4. Let r be an integer > 1, and consider the map
K, : SUQ)Y — SUQ): (x1, ViseoesXp, Yr) > yr_lxr_ly,x,...yl_lxl_'ylxl.
(1) The map K, is surjective.

(ii) The critical points of K, all lie in K,“I(I).
(iii) K, Y(I) is the set of critical points of K.

@Gv) If(x1, y1, ..., xr, ¥) isacritical point of K, then Z(x))NZ(y1)N---NZ(x,)NZ(y,)
is either SU (2) or a maximal torus in SU (2).

) If (x1, ¥1, - .., Xy, yr) is not a critical point of K, then Z(x1)NZ(y1)N---NZ(x,)N
Z(yr) = {£I}

i) (%1, y1s - .- X, yr) is a critical point of K, if and only if x1, yi, ..., Xr, yr all lie in

one maximal torus in SU(2) (they commute with each other).
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Proof. (i) This is a general fact valid for compact connected topological groups having
finite center, not only for SU(2). But for SU(2), it suffices to observe that any

g 0
(O B)ESU(Z)

can be written as b~ 'a~!ba for some a, b € SU(2); for instance,

0 i a 0
b_(i 0) and a_(o &),

wherein « is a square-root of .
(ii)—(vi) follow by combining Lemmas 2.2 and 2.3. For example, for (ii), if x = (x1, y1,
..s Xr, ¥r) is a critical point of K, then, by Lemma 2.2, the isotropy group at x of the
SU(2) action on SU (2)2’ has non-zero Lie algebra. Then, by Lemma 2.3, all the x;, y;
commute, and so K,(x) = 1. (}

2.3. Decomposition of K" (c) into manifolds

If ¢ € SU(2)\{I} then, by Lemma 2.4(ii), ¢ is a regular value of K, and so Kg‘l(c) is a
smooth submanifold of SU (2)%4. So we shall focus on K 7 1(I. As noted in (2.2), we have
the decomposition

K, ') = Fapg-n U Fag U {£1)%8 (2.5a)

according to the isotropy type of the conjugation action of SU(2)on K ;- 1(I). Since F3 (2g-2)
is, by definition, the set of all points on K (I where the isotropy group of the SU(2)
conjugation action is {£/}, it follows from Lemmas 2.3 and 2.4(iv) and (v) that

Fipg—2) = Kg_l (1) N Uy, (2.5b)

where Uy is the set of all non-critical points of K.

If g = 1 then, by Lemma 2.4(iii), K 1(I) consists only of the critical points of K ¢ and
so, by (2.5b), F3(25—2) is empty.

Now suppose g > 2. Then, by the surjectivity of K, (Lemma 2.4(i)), we can pick
X = (X1, ¥1,...,%g, yg) € K7 '(I) for which K1 (xy, y1) # I. Then, by Lemma 2.4(v), x
is not a critical point of K. Thus F3(2,_2) is non-empty, if g > 2. Thus, when g > 2,

Fipg—2) =(K g|UnC)_1 (I)is a smooth 3(2g — 1)-dimensional submanifold
of (the open set Uy, C)SU(2)%. (2.5¢)

Next we consider F»,. By definition, F2¢ consists of those points in K- 1(I) where the
isotropy group is a maximal torus in SU (2). Let T be a maximal torus in SU (2). Thus the
map

@' SUQ) X T? = SUQR)® - (x,11,...,125) = (xtyx™, .. xtaex™!)  (2.62)

has image 72, U {£] }2¢; this follows from Lemma 2.3.
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Computing do! at a point (x, p) = (x, (¢;);), we have
Ao (xX, (tjv));) = @' (x, pPAdX)[v; — (1 — Ad(77 X1, (2.6b)

Splitting X as X|| + X, where X € L(T) (the Lie algebraof T) and X ; € L(T)*, we
see that (x X, (#;v;);) lies in ker d®! if and only if each vj is 0 and Ad(#})X | = X, for
each j. If some ¢; # &/ then the condition Ad(z;) X = X is equivalentto X = 0, i.e.
X € L(T). Thus the map @' induces, by restriction and quotient, an immersion

@ : (SUQ)/T) x (TPE\({£I}*¥) > SU((2)* (2.6¢)
whose image is F»,. Examining @, we see that it induces a continuous one-to-one map
D [(SUQ2)/T) x (TE\{£I}*4)]/W — SU2)* (2.6d)

with image F,,, where the quotient [- - -]/ W is under the action of W = N(T)/T =~ {1, n},
the Weyl group of T, on (SU(2)/T) x T?# specified by

nT (Tt ... ) =Cn ' T ).

This action is free and restricts to a free action on (SU(2)/T) x (T3\{x1 }28), and so
[(SUQ2)/T) x (T 28 \{x1 128)] /W is a smooth manifold, the corresponding quotient map
being a 2-fold covering. Since @' maps closed sets to closed sets, the map @ takes closed
sets to (relatively) closed subsets of Fg; thus @ gives a homeomorphism onto Fg, taken
as a subspace of SU (2)2g . Since @ is an immersion, so is @ . Thus

Fg is a submanifold of SU (2)*%, (2.7a)
and & gives a diffeomorphism onto F,. In particular,
dim F>, = 2g + 2. (2.7b)

Thus Kg_l(I) is the union of the disjoint sets F3(25-2), F2g, {£1}%8, where F32e-2)
is a 3(2g — 1)-dimensional submanifold of SU(2)?8 and Fg is a (2g + 2)-dimensional
submanifold of SU (2)?%.

Note that each of the manifolds making up K g (I is of codimension > 2 in SU (2)%8.

2.4. Structure and connectivity of the sets K ; L)

We will prove that each K g 1(c) is connected and, furthermore, that the manifolds
F3(2¢~2) and F2g (which make up K ;- L(I)) are also connected.

The arguments for connectivity of K Y(c) and Fg will have a Morse theoretic flavor
but we will work through detailed ‘elementary’ arguments, since these will yield additional
facts which will be useful for other purposes.

The space F, is connected because it is the image of a connected space under the
continuous map @, as seen in (2.6d).
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We turn now to K- !(¢). The argument will be inductive, with the following observation
leading to the first inductive step.

Lemma 2.5, Let r > 1 and let C : SU22)¥ — SU(2) be a product of commutators of
some of the pairs (x;, y;) (more precisely, C = C;, --- C;, for some distinct iy, ..., iy €
{1,...,r}). Then there is a diffeomorphism

¥ (SURNID x C =D - su*\c~ (D) (2.82)

such that the following diagram commutes:

suMIyxc'-n % SUQRN\C-\(I)

N\ Pry v C (2.8b)
SU\{I}

where pr; is the projection on the first factor.

Proof. If p € SUQR)*\C~!(I) then p is not a critical point of C (this follows from
Lemma 2.4(iii)). Thus C is a submersion of SU(2)>"\C~!(I) onto SU (2)\{I}. Moreover,
C is a proper map. Then by Ehresmann’s theorem [1, 20.8, prob. 4] C is a fibration. Since
SU(2)\{I} is contractible, it follows that C is a trivial fiber bundle. O

Next we have our first connectivity result for K~ ! (c):

Proposition 2.6. For any h € SU)\{I}, K| Y(h) is a smooth manifold diffeomorphic to
SO(3). In particular, K~ ! (h) is connected for every h # I.

Proof. Inview of the preceding result, it will suffice to prove that K|~ H=Dis diffeomorphic
to SO(3). Let

i 0 0 1
ao:(o —i) and b():(__1 0),

then bo_lao—lboao = —1. It is proven in Lemma 3.13 of [6] that ¢ : SU(2)/{*1}
SU(2)? : £x > (xagx~", xbox~") maps SU(2)/{£1} onto K ' (—1I). Since ag and by do
not commute, Lemma 2.3 says that Z(ag) N Z(bg) = {£1}. Thus ¢ is one-to-one. The map
¢ is smooth, and its derivative is given by

P ()7 'dgl X = (Ad(x)(Ad(a;") — DX, Ad (x)(Ad (b; ") — DX).

Thus any X € ker ¢(x)~'d¢|, commutes with both ay and by; so, since ay and by do not
lie in any one maximal torus, it follows from Lemma 2.3 that X must be 0. Thus ¢ has no
critical points. Since —1 is a regular value of K| (Lemma 2.4(ii)), it follows that K ! D
is a (compact) submanifold of SU(2)?. We conclude that ¢ : SUQ2)/{+I} - K . N(=1 )is
a diffeomorphism; since SU(2)/{£/1} =2 §O(3), we see that K| ! (—1) is diffeomorphic to
SO@3). ]
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Let Cy be the commutator in the pair (xg, y¢) in (x1, y1, - .., Xg, Yg), L.
Ci: SUQE — SUQ): (51, ..., ¥o) = v xp vk (2.9a)

Then K, = C, ... Cy, and so

8
K;'dK, = ZAd(cj_l ...cl)—lcj“dcj, (2.9b)
j=1

which implies that if some C; is not critical at a point p then K is also not critical at p.

We will now prove the connectivity of K ;- 1(h). The argument is inductive. The strategy
is to focus on the subset F! (k) of K g 1(h) on which both C| and C ¢ -+ - C7 are non-critical.
As we will see, the ‘projection’ Cy : F Y(h) = SU(2)\{I, h} is a surjective submersion and
has connected compact fibers. This will imply that F' (k) is connected. Next, connectivity
of K ' (k) will be established by showing that any point in K ;! (%) can be connected by a
path to some point on F! (k).

Proposition 2.7. K~ L(h) is connected, for every integer r > 1, and every h € SU(2). The
set F1(h), consisting of all points in K - L(h) where Cy ¢ {1, h}, is also connected (and
non-empty whenr > 2).

Proof. We will write G for SU(2). It has been shown in Proposition 2.6 that K| ! (h) is
connected when & # I. The connectedness of K 1(I) follows from the observation that,
with T being a maximal torus in SU(2), the map G x T? — Kl“l(l) : (x,a,b)
(xax~!, xbx~") is a continuous surjection (this follows from Lemma 2.4(iii) and (vi)).

Now let N > 2, and assume that K~ L(c) is connected for every ¢ € SU(2) and every
r=1,...,N—1.

We will show first that 7! () is connected. The set ' (%) consists of all points x € G
where Ky(x) = hbut C1(x) ¢ {1, h}, i.e.

Flny = crUG\IL Y N Ky () c G,
It follows from Lemma 2.4(i) that ' (k) # @. Moreover,
Ci(F'(h) = G\{I, h},

forif g; € G\{!, h}, then by Lemma 2.4(i), we can choose p = (x1, ..., yn) € G2V such
that C((p) = g1 and Cn(p) - -- C2(p) = hg;', and thus p € Fl(h).

Being a level set of Ky in an open subset of the set of non-critical points of Cy, F Y(h)
is a smooth submanifold of G2V (by (2.9b), Ky is not critical when C; is not critical). It
follows from Lemma 4.1 (see Section 4 for a detailed explanation) that the map C; |F L) -
FY(h) — G is a submersion. If z € G\{I, h} then the level set (C\|F!(h)"1(z) =
C 1_] @NK ;l(h) is compact and connected, being (homeomorphic to) K, ! (z) x K;l_l
(hz~1), which is connected by the induction hypothesis on Ky_1. Thus Cj|F O
FY(h) — G\{I, h}is asurjective submersion with compact connected fibers (C1|F L)~!
(z). This implies that F! (k) is connected : for if p, g € F'(h), then we can choose a path
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¢ : [0,11 = G\{I,h} from C;(p) to Ci(q) and then, by the submersive surjectivity of
C1|F'(h) and compactness of the fibers of Cj, we can find a path ¢ : [0,1] — Flh)
with é(0) = p and &(1) € (Ci|F! (h))~1(C1(g)); connecting &(1) to g by a path in
(C1|F ()~ (¢, (g)) completes the argument.

To prove the connectivity of K ;1 (h) it will now suffice to show that any point in K 1;' (D)
can be connected to a point in F (h) by a path lying in K ;l(h)‘ To this end let p =
(X1, Y1, .-, XN, yN) € Ky (W\F' (h); thus C1 (p) € {1, h}.

Suppose C1(p) = h # 1. Then Ky_1(x2, ¥2,..., xn, yn) = I. Now, as we have seen
earlier (2.5b) and (2.7a), K;l_l (D) is the union of at most three submanifolds of GXVN =D,
each of positive codimension. So the point (x2, y2, . .., xy, yy) inthe 6(N —1)-dimensional
manifold K ;I_I(G\{h}) has an open connected neighborhood in which K ;1_1(1 ) is the
union of at most three positive-codimension submanifolds. Thus there is a path [0, 1] —
G*N=D .t p, such that : py = (x2, ¥2,...,xn, yn), Kn_1(p;) # hforall ¢ € [0, 1]
and Ky_1(p1) # I. Thus KN_l(ﬁ,)_lh # I forall ¢t € [0, 1] and KN_l(ﬁl)_'h #* h.
Then, since K| : K| ! (G\{I}) — G\{I} is a submersion with compact connected fibers
Kl“l(z), it follows that there is a path [0, 1] - G? : ¢t > p/ with py = (x1,y1) and

Ki(p}) = Kn—1(p)""h. Then p € (p/. pi) € Ky' (0. po = p, and p; € F'(h). Thus
we have connected the point p to a point in F' (k) by a path in K ;1 (h).

Now suppose C1(p) = I # h. We wish to show that there is a path in K 1\_/1 (h) from p to
F(h). Since K n ! (I is connected, we may assume that

(0 i g (10
=g o) TR0 1)

el 0
x1(t) = ( 0 e_;,) and y (1) = 1.

Let

Then the path [0, 1] — G?:t e c(t) = (x1(0), y1(1)), starts (x1(0), y1(0)) = (x1, y1),
and K1(c(?)) = x1(2t) ¢ {I, h} for ¢t near O but t+ # 0. At r = 0 we have K(c(0)) =
Ci(p) =1.Since Kny(p) =1 and C1(p) =1 # h,wehave Cy(p)---Ca(p) = h # 1.
So, by Lemma 2.4(vi), Ky—1 : G2WW-1) 5 G is a submersion in a neighborhood of p’ =
(x2, ¥2, ..., xn, yn). Then by our usual argument there is a path cy_ : [0, 1] — G*N—D
such that cy_1(0) = p’ and, for ¢ near 0,

Kn-1(en—1(6)) = hK (c@) 7.

Thus Ky (c(t), cn—1(2)) = h,and (¢(t), cy_1(t)) € FL(h) for smallr # 0. Thus, if h # I,
we have connected p to a point in ! (k) by a path in K ;] (h).

Finally, suppose Ci{p) = [ and h = I. Since K| ! (I) and (by the inductive hypothesis)
K;l_l (I') are connected, so is Cl‘1 )] ﬂK;l ) ~ Kl—l(I) X K;l_l (I). So we can connect
the point p € C;' (1) N K5 (I) to the point (1, b, ..., I, b) € C7' (I) N K5 ' (I), wherein

0 i
b=<i 0)’
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by a path lying in Cl_l nHn K;l (I). So it will suffice to connect the point (I, b, ..., I, b)
to a point in FND by a path in K;l(l). Now let

7/ 1t ~ AN

e U
xi(t) = ( 0 e—i’) and y((t) = b;
then a simple calculation shows that K (x (), ¥1(t)) = x1(2t). Therefore,

KnGi (), i), ....x1(t), yi (), x1 (1), (@) = 1,

where t’' = —t/(N — 1).
Thus

t t t
“"P(I)=<x1 <—ﬁ),)’1 <_N—1)’.”’x1 (_N—l)’
Y1 (*ﬁ) ,xl(t)»)’l(t))

is a path in K;l(l), which for ¢+ # 0, but near 0, lies on FL(I). Of course, p(0) is
(I, b, ...,1,b), the chosen starting point. Thus p(0) is connectable to a point in F L(h) by
a path in l‘(;l(h). 0

Finally, we prove that F3(2,_2) is connected. This will be done by showing that 7 '
is a dense subset of F3(2,_2); since F L(I) is connected, it will follow that so is F2e-2)-
The density of F!(I) will be proved by showing that the complement C 1_1 (1) N Fzpe—2)
is contained in a finite union of submanifolds of F3(2,_2) each of codimension > 1. The
reason why C l_l (I F3(2¢-2) is easier to understand is that it is an open subset of C|° ! (HnN
K ¢ Ih=K . ! (I x Kg'_]1 (I), where the first factor can be understood in explicit terms
while the second factor can be handled by induction.

Proposition 2.8. Ler g > 2, and recall that F3(2,-2) is the set of points in K ¢ L(I) where
the isotropy group of the conjugation action of SU (2} is {x1}. Then the set F Y(I), consisting
of all points (x1, yi, ..., Xg, ¥g) in F3g—2) with commutator yl_lx,"ylxl # 1, is dense
in F3(g-2). Consequently, F3,—-2) is connected.

Proof. Let G = SU(2),and C| : G?8 — G the commutator in the first pair (x, y,). Then
the complement of 7' (1) in K7'(1) is C7 ' (1) N K7 '(I) = K (1) x K, (I). Recall
from (2.5a) and (2.7b) that K ! (I) is the union of {#:1}? and a four-dimensional manifold,
and, for r > 1, K'(I) is the union of three submanifolds of SU(2)*" each of dimension
< 3@2r —-1).

Thus if g = 2 then C; (1) N Kg_l(l) is the union of the four submanifolds of SU (2)%,
each of dimension < 8. Recall that, for ¢ = 2, F3(2¢—2) has dimension 3(2.2 —1) = 9
and is the intesection of K, (I with the open set U, of all non-critical points of K g
Thus, intersecting with U, we see that for g =2, C ! (I) N F3(2¢—2) is the union of four
submanifolds of F3(25_2), each of codimension > 1. Therefore, the complement F 1 (I) is,
in this case, dense in F324-2).
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Now suppose g > 2. Then Kg__'l (I) is the union of three submanifolds of G2¢~1 each
of dimension < 3(2(g — 1) — 1). So Cl"1 Hn Kg‘I (1) is the union of six submanifolds of
SU (2)?# each of dimension < 32(g—1)—1)+4 = 6g —5. Since dim F3(24-2) = 6g — 3,
we see that C 1_1 (I) N F3(2¢-2) is the union of a finite number of submanifolds of F3(2,-2)
each of codimension > 2. Hence, the complement F L1 ) is dense in F3(2,-2). O

2.5. Bundle structures over the strata of M°

We have shown that Kg_l(I) is the union of disjoint sets F3(2¢—2), F2¢, and (£1}%8,
where F3(2,—2) and F, are submanifolds of SU (2)%4. The moduli space M? is identifiable
with the quotient K . D /SU(2). Thus we should understand the quotients F3(2,-2) —
F30g-2)/SU2) and Frg — Frg/SU(2).

Proposition 2.9. For g > 2, the quotient space F324_2y/SU(2) is a manifold of dimension
3(2g — 2), and the quotient map F3og_2) — F3e—2/SUQ) is a principal SO(3)-
bundle.

Proof. We have already seen that F3(2,_»7) is a smooth 3(2g — 1)-dimensional submanifold
of SU(2)?¢, the conjugation action of SU (2) on F3(24_2) is smooth, being the restriction of
the action on SU (2)%4, and, by definition of F3(2¢-2), has isotropy group {1} everywhere.
Therefore, the quotient space F3(25—2)/SU (2) is a smooth 3(2g — 2)-dimensional manifold
and the quotient map F32¢—2) = F32¢—2)/SU(2) is a principal SU(2)/{xI}-bundle (see
Proposition 4.2). To conclude, we use the fact that SU(2)/{£1} ~ SO(3). O

Next we shall show that 75, — F5,/SU(2) is a fiber bundle and identify it with a
specific bundle over 7>, /SU(2). Let T be a maximal torus in SU(2), and W = {I, n} the
corresponding Weyl group acting on T by n(t) = ntn~! = t~1. Then, as noted after (2.7a),
Fg can be identified with [(SU (2)/T) x (T?8\(£I}%)]/W.

The quotient projection (T28\{%1}?8) — (T?8\{£1}*%)/W is a principal W-bundle
(i.e. a 2-fold covering). The group W = {I, n} has a right action on SU(2)/T in the usual
way, with n actingby x T +> xn~ ! T. Thus we have a corresponding fiber bundle, with fiber
SU(2)/T, associated to the principal W-bundle (T28\{£1}?8) — (T28\{£1}?¢);/ W.

Proposition 2.10. The quotient space Fy4/SU(2) is a manifold and the quotient map
Fag = Fou/SUQ) is a smooth fiber bundle isomorphic (in the smooth category) to
the fiber bundle with fiber SU(2)/T associated to the principal W-bundle (or covering)
(T?8\{£1}%8) — (T28\{x1}*8)/ W, where W = {I, n} acts on SU2)/T by xT + xT
and xT — xn7'T.

Proof. As we have seen before in the context of (2.6a), the map (with G = SU(2))

@' (G/T) x T? — G* : (xT, 11, ..., ) = (xtix ™, .. xt2ex™)  (2.102)
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has image F, U {£] }?¢, and induces by restriction and quotient a continuous one-to-one
map

@ [(G/T) x (TH\[EIP*O/W — G* (2.10b)

with image F»,, where the quotient [- - -]/ W is under the right action of W specified by
meW,n#1)

nT - (T.t,....t00) = Gen ' T, 07, 15,

This action is free and restricts to a free action on (G/T) x (ng\{:tl }23), and so the
quotient [(G/T) x (T*8\{£1}?¢)]/W is a smooth manifold, the corresponding quotient
map being a 2-fold covering. As seen in (2.7b), 72, is a submanifold of G*8 and @ gives
a diffeomorphism onto F>,.

The natural left action of G on G/T gives a left action of G on (G/T) x T? (which
commutes with the right action of W), and a corresponding action on the quotient space
[(G/T) x (T28\{£1}%8)]/ W. It is readily verified that & is G-equivariant.

These considerations may be illustrated by the commuting diagram :

[(SUQ)/T) x TE\EIEW S 5
Lp 2 (2.10c)
[T28\(£1)?8]/ W 2 Fo/SU@)

where p is obtained from the projection of (SU(2)/T) x T?8 on the second factor, p’ is
the quotient map, and & is the induced map. Clearly Pisa homeomorphism.

We observe that p is a smooth fiber bundle projection: it is the G/T-bundle associ-
ated to the principal W-bundle T28\{£1}?¢ — (T?8\(£I}%¢)/W by the action of W on
G/T (specified by n - xT + xn~!T). As already noted, @ is a diffeomorphism and @

is a homeomorphism. Thus the projection Fp, L F2g/G is a submersion if and only

if F»,/G is equipped with the smooth structure which makes @ a diffeomorphism; and
with this smooth structure, the projection 72, — F2,/G is a smooth fiber bundle with
fiber G/ T and structure group W, isomorphic (in the smooth category) to the bundle given

by p. |

Proof of Theorem 2.1 We can now put together all the pieces to obtain Theorem 2.1.
Recall that the moduli space M° of flat connections over the compact oriented genus
g(= 1) surface ¥ is identified with the quotient space K e 1(I)/SU (2). Then MO is the
disjoint union Mg(Zg—2) U Mgg U Mg, where Mg(z ¢—2) corresponds to the quotient
F32¢-2)/SU(2), the stratum Mgg corresponds to F»,/SU(2), and Mg is a set of 228
points corresponding to {£7}%¢/SU (2). We have already proved that F32g—2) is empty
when g = 1, while for g > 2 it is a connected 3(2g — 2)-dimensional manifold. We have
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also proved, in Proposition 2.10, that 7, /SU(2) is a connected 2g-dimensional manifold,
as given in (2.10c). a

3. The moduli spaces of flat SO (3) connections

Let X be a compact connected oriented two-dimensional manifold of genus g > 1. Then
there are two topologically distinct classes of principal S O (3)-bundles over X', one trivial
and the other non-trivial. The moduli space of flat connections on the trivial bundle will be
denoted MO(I ), and the moduli space of flat connections on the non-trivial bundle will be
denoted MO (—1). The main results are:

Theorem 3.1. The moduli space MO(I) is the union of disjoint subsets

MO = MG, (1) UM () UM, _,(I) UMD, @3.1)
where
1) Mg(z g—2)(I ) is a connected 3(2g — 2)-dimensional manifold (empty if and only if

g=1),

(ii) Mg " (1) is a connected 2g-dimensional manifold,

(iii) Mgg_z(l) isempty if g = 1, while for g > 2 itis a (2g — 2)-dimensional manifold
with 228 — 1 components,

(iv) M(O)(I ) is a finite set.

For the non-trivial bundle the corresponding result is:

Theorem 3.2. The moduli space M®(—1I) is the union of disjoint subsets:

MOU(=I) = M, (=D UM, _(—1) U M(=D), (3.2)
where
@) Mg(z g—z)("l ) is a connected 3(2g — 2)-dimensional manifold (empty if and only if
g=1),

(ii) M(z) g—2(_1 )is a (2g — 2)-dimensional manifold with 2°¢ — 1 components (empty if
andonlyifg =1),
(iii) Mg(—l) is a finite set.

In this section we shall often write G for SU(2), and G for SO(3). There is a standard
covering map G — SO(3) : x — X, whose kemel is {£/}. If ¥y € SO(3), we will denoted
by y any element in SU (2) which covers y.

The product commutator map

Ky : SO — G : @1, b1,.... 8. bg) o> by 'ag 'bgay .. b7 a7 b1ay (3.3)

will be useful. Since the kernel of the covering map G — SO(3) is (in) the center of G,
K, is well-defined.
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The moduli space M%(I) of flat connections on the trivial bundle can be identified with
quotient K g 1(1)/50(3), while the moduli space MO(=TI) of flat connections on the non-

trivial bundle can be identified with K 3 (—D)/S03):
MU =K' (D/SOB)  and  MO(-D) = K;'(-1)/SO@3). (34

The strategy is again to understand the structure of M%(z) ~ K ¢ (2)/50(3) by sepa-
rating out the subsets of K g 1(z) corresponding to different isotropy groups of the SO (3)
action.

We are using the following decomposition:

K;'(2) = Fag-2)(2) U Fag(2) U Fag2(2) U Fo(2), (3.52)

where z = 1, and
@) ?3(25,_2) (z) is the subset of K )y 1(z) where the isotropy of the SO (3)-action is {/},

(ii) ?25, (z) is the subset where the isotropy group is a maximal torus in SO(3),

(iii) fzg_z(z) is the subset where the isotropy group consists of two elements (the identity
and a 180° rotation),

(iv) Fo(z) is the remaining subset of K g 1(2); as we shall see in Proposition 3.4 below,
the only other possible isotropy groups are: (a) SO (3), (b) the normalizer N(K) of a
maximal torus K of SO (3), (¢) afour-element group {I, ny, na, n3}, where {ny, no, n3}
are 180° rotations around orthogonal axes.

(The set Fo(z) should not be confused with ?zg_z(z) or with ?3(2g_2) () forg =1.)
Then we decompose the moduli space as

MO(2) = M, 5 (@) UMD, (2) UMY, ,(2) U M{(2). (3.5b)

where Mg(z 2—2) (z) is the subset corresponding to 7'3(2g_2) (z)/S0O(3), and similarly for
M3, (@), M3, ,(2), and M(2).

3.1. The isotropy groups of the SO (3)-action

We start with a few preliminary observations. Some of these may be verified by taking
the covering map SU(2) — SO(3) to be given by means of the adjoint representation of
SU(2) on its Lie algebra g; the vector space g can be identified with R? using a basis which
is orthonormal with respéEt to an Ad-invariant metric on g

Observations 3.3.

(i) A maximal torus in SO (3) corresponds to rotations around a fixed axis in R3.

(i) Elementsa, b € SO(3) satisfy b~1ab = —a,whered, b € SU(2) covera, b € SO(3),
if and only if @ and b are 180° rotations around orthogonal axes (this may be verified
by considering a diagonal form for a, for instance). Thus an element a € SO(3)
commutes with b € SO(3) if and only if either a and b lie in the same maximal torus
or they are 180° rotations around orthogonal axes.
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(iii) Let a € $O(3), T a maximal torus in SO(3) and suppose aba~' € T for some

b € T\{I}. Considering covering elements , b € SU(2), with b taken diagonal by
suitably conjugating 7', it follows by matrix computation thata € N (T) (the normalizer
of T) and aba~! = b*!. Conversely, ifa € N(T)\T and b € T thenaba™! = b~ 1;
this may also be verified by passing to SU (2).

(iv) By (iii) and (ii), N (THO\T consists of all the 180° rotations about axes orthogonal to
the axis for T

Proposition 3.4. Ler H, C SO(3) be the isotropy group at a point x = (x1,...,%,) €

SO3)" of the conjugation action of SO(3) on SOB) ,r > 1.

G H,=S0B)ifandonlyifx =(,..... D), i.e. {x1,....,x}={I}

(i) Hy = N(K) = K UnK, the normalizer of a maximal torus K in SO3) (thus
n € N(K)\K), ifand only if {x1,...,x,} C {I, 1} for some 180° rotation t (the
180° rotation belonging to T) and {x1, ..., %} # {I}.

(iii) Hy = {I, n1, na, n3}, where n1, na, n3y are 180° rotations around three orthogonal

axes, if and only if: {n;,n2} C {x1,...,x.} C {I,n1,n2,n3} (e {x,...,x} C
{I, n1, na, n3} but there is no 180° rotation t such that {x1, ..., x,} C{I, t})

(iv) Hy = K, a maximal torus in SOQ3), ifand only if x\,...,x, € K and there is no
180° rotation T such that {xy,...,x,} C {I, t}.

(v) Hy = {1, 1}, for some 180° rotation n, if and only if : there is a maximal torus K
(containing t) and 180° rotations ny, ..., n;, with axes orthogonal to that for K,
suchthat {x1,...,x,} CKU{ny,...,n;}(ie, {x1,...,x} C N(K))but x does not

satisfy the conditions of (1)~(iv) above.
(vi) H, = {I} if and only if the conditions of (1)—(v) do not hold, i.e. there is no maximal
torus K such that {xy,...,x.} C N(K).

Proof.

(i) Apparent.

(i) Suppose {I} # {x1,...,x} C {I, 1}, for some 180° rotation 7. Then H, = {y €
SO3) : yry‘l = t}; by Observations 3.3 (ii} and (iv), this set equals N(K), the
normalizer of the maximal torus K containing 7. Conversely, suppose Hy = N(K).
Then each x; commutes with every element of K, and so each x; must € K. Moreover,
choosing n € N(K)\K, we have x; = nxin~! = xi_l, and so xi2 = I. Since H, #
SO(3), x cannot be (I, ..., I); thus x = (x1,...,x,), with {I} # {x1,...,x} C
{1, t}.

(iv) is proved by arguments similar to those used for (ii).

(iii) Suppose that there are 180° rotations nj, nj and n3, around orthogonal axes, such that
{n1,n2} C {x1,...,x} C {I,ny,n2,n3}. If y € H, then y commutes with n, and »;
and hence, by Observation 3.3(ii), must belong to {I, ny, na, n1}. It also follows from
Observation 3.3(ii) that {I, ny, ny, n3} C H,; thus H, = {I, ny, ny, n3}. Conversely,
suppose H, = (I, ny, n2, n3}, the n;’s being 180° rotations around orthogonal axes.
Then, by Observation 3.3(ii), each x; must either be in {I, ny, ny, n3} or be a 180°
rotation with axis orthogonal to those of n, n2 and n3. The latter being impossible,
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we conclude that {xy, ..., x,} C {I, ny, nz,n3}. Now if {x, ..., x,} were a subset of
{I,n} then H, would, by (i) and (ii), not be equal to {I, n{, ny, n3}. Thus H, must
contain at least two 180° rotations; taking these to be n| and n;, we conclude that
{ny,n2} C {x1,...,x} C {I,n1,n2,n3}.

(v) Suppose H, = {1, t}, where 7 is a 180° rotation. Since, by Observations 3.3, the set
of elements which commute with T equals N (K), the normalizer of the maximal torus
K containing 7, it follows that {x, ..., x,} C N(K); since H, contains two elements,
the conditions for (i)—(iv) cannot hold.

Conversely, suppose that {xi,...,x,} C N(K), where N(K) is the normalizer of
a maximal torus K, and the conditions for (i)-(iv) do not hold. Then {/, t} C H,
because T commutes with every element of N(K). Since (i)—(iii) do not apply, there
is at least one x; € N(K)\K. If there is only one x; € N(K)\K then, since (ii) and
(iv) do not apply, there is some i € {1,...,r} with x; € K and 112 # I; in this case
H, C Z(x;) " Z(x;) = {I, t}, and so H, = {I, }. Now suppose there exist distinct
xj,xx € N(K)\K. If x; and x; have orthogonal axes then, since (ii) and (iv) do not
apply, there is some x; € K with xl.2 # I and so, as before, H, = {I, t}. Finally, if
xj, xx € N(K)\K have non-orthogonal axes then Hy C Z(x;) N Z{xy) = {I, T}, and
so again H, = {I, t}.

(vi) Suppose {x, ..., x,} C N(K) for some maximal torus K. Then, by Observation 3.3(ii)
and (iv), the 180° rotation 7 € K commutes with each x; and so H, cannot be {I/}.
Conversely, if H, # {I} then, choosing &# € H,\{I}, and letting K be the maximal
torus containing /, Observation 3.3 shows that N (K) is the set of all elements of SO (3)
which commute with 4, and so {xi, ..., x,} C N(K). O

3.2. The structure of F3pg—2)(£I)

Recall that F3 (2g—2)(2) is the set of all points in K 7 1(z) where the isotropy of the SO (3)-
action is {7}.

Proposition 3.5. If g > 2 then F324—2)(I) is non-empty and is a connected 3(2g — 1)-
dimensional submanifold of SO(3)%8. If g = 1 then Fag-2 ) is empty.

Proof. Recall that F3(2,42), the subset of K 7 1(I) ¢ SU(2)%8 where the conjugation action
of SU (2) has isotropy group {1/}, is the part of the level set K g 'a ) which lies in the set
of non-critical points of K,.If p € ?3(23_2)(1 ) then, by Lemma 2.2, K ¢ is not critical at
P and so, since the covering SU(2) — SO(3) is a local diffeomorphism, K, is not critical
at p, and therefore p € F3(2,—2). Thus .7'3(28._2)(1 ) is a subset of ?3@-2), the projection
of F3(2¢—2) on SO(3)?8. If g = 1 then F3(2,—2) = @ and hence so is F324-2)(1).

We proceed with the case g > 2.

Pick a, b € SU(2) such that: (i) @, b do not commute, (ii) a2, b2 ¢ {£1}; for example:

el 0 cost —sint
a = —it and b= . ’
0 e sint  cost
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where 1 = 7/4. By Lemma 2.4(i), we can choose ¢,d € SU(2) satisfying d !¢ !dc =
(b~'a~'ba)~". Then, recalling that g > 2, we have (@, b,¢,d,1,1,..., 1) € K; '(I) and
Z@NZB)NZE@NZE) = {I};forif x € SU(2) satisfiesxax™! = taand xbx~! = +b
then, since a? # %I and b* # %1, it follows (by Observation 3.3(ii)) that xax~! = a and
xbx~! = b, and thus, since b~'a"'ba # I, x must be 1, and so ¥ = I(€ SO(3)). Thus,
@,b,c,d, I, 1,...,1) € Fag—2)(I). So, if g > 2 then F320—2)(I) # 0.

Let W be the set of points of SO(3)?¢ at which the isotropy group of the SO (3) con-
jugation action is {I). It is readily seen that WV is non-empty. Let us check that it is open.
Consider a sequence p1, p2, ... of points in W€ converging to some p € SO(3)%. From
Proposition 3.4 we see that for any g € SO(3)%4, the isotropy group H, is either {I} or
contains a 180° rotation. Thus each isotropy group H), contains a 180° rotation x;. After
passing to a subsequence if necessary, we take x; converging to a point x, and have

xpx~! = lim xjpjx-_l = lim p; = p,
Jj—o0o J j—=o0

i.e. x € Hp,. Since each x; is a 180° rotation, so is x. Thus the limit point p does not
belong to W. Thus W is open. In fact, the complement of W, being the subset of § 0 (3)%8
covered by Proposition 3.4(i)—(iv), consists of the union of a finite number of submanifolds
of dimension < 2g + 3 and so is W a dense open subset of S 0(3)%8. (Actually, a general
result in the theory of transformation groups implies that WV is a dense open subset of
50(3)%8) By Lemma 2.2, K ¢ has no critical points in W; therefore, _}_'3(2g_2)(1 ), being
the level set (IZgIW)_l(I), and being non-empty if g > 2, is, in that case, a 3(2g — 1)-
dimensional submanifold of SO (3)%.

As we have already noted, ?3(253_2)(1) C ]_-'3(2g_2). Thus ?3(253_2)(1) is the subset of
.7'3(2g_2) consisting of the points where the SO (3)-conjugation-action is free. Let U, be
the subset of SO(3)%¢ consisting of all non-critical points of K,; then U/, is open and
Fig—2) = (KglU) ™' (I). Thus, for g > 2, F3,—2) is a smooth 3(2g — 1)-dimensional
submanifold of SO (3)%8. Since F3(2g—2) is connected, so is its continuous image ?3(2 g=2)-
The conjugation action of SO(3) on SO (3)?¢ restricts to a smooth action on the invariant
submanifold F3(2¢—7). Since K ¢ is non-critical at each point of F3,_2), it follows from
Lemma 2.2 that the isotropy group at every point in ?3(25'—2) is discrete. By Proposition
3.4, we know that this discrete isotropy group is either {I}, or a two-element group or a
four-element group. As will be proven later in Propositions 3.13 and 3.22, the subset of
?3(257—2) consisting of points where the isotropy group is a two-element group or a four-
element group is the union of a finite number of submanifolds each of dimension < 2g + 2.
Since these manifolds have codimension > 4g — 5, and since .7'3(25,_2) is connected, it
follows that, for g > 2, F3(2,-2)(1) is connected. O

A general result in the theory of transformation groups says that the set of points of
minimal isotropy is a dense open subset of the connected manifold on which the group acts,
and the corresponding projection onto the quotient space is connected. In our setting, this
also implies that F32,—2)(I)/SO(3) is connected.
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Proposition 3.6. If g > 2 then .7-:3(28_2)(——1 ) is non-empty and is a smooth connected
manifold of dimension 3(2g — 1). If g = 1 then F32,_2)(—1) is empty.

Proof. If g = 1, and (a, b) € K ‘1( I), then, by Observation 3.3(ii), a and b are 180°
rotations around orthogonal axes. In this case, the isotropy group at (a b) is, according to
Proposition 3.4(iii), a four-element group. Thus at no point on K ( I) does SO(3) act
freely, i.e. ]-'3(2g_2)( Disemptyif g = 1.

Now suppose g > 2. Pick a,b € SU(2) such that: (i) a, b do not commute, (ii) a?
and % are not in {£7}. Pick (by Lemma 2.4(i)) c,d € SU(2) such that d~!¢"ldc =
—~(b a7 'ba)~!. Then @,b, E d,. .)€ IZ‘I(—I) and, as in the proof of Proposition
3.5, the isotropy group at (@, b,¢,d,1,1,...,1)is {I}. Thus (@, b,c,d,1,1,...,I) €
Fapg-2(=D). N

We work with g > 2. By Lemmas 2.4(ii) and 2.2, —1 is a regular value of K,, and so
K ¢ Y(—1I) is a smooth 3(2g — 1)-dimensional submanifold of SO(3)?8. As in the proof
of Proposition 3.5, F3(3g—2)(—1I) is an open subset of K, !(—I) and so is a 3(2g — 1)-
dimensional submanifold of SO (3)?%.

From Proposition 2.7, the manifold K ;- 1(—1I) is connected, and hence so is the projection
K P 1(—1). It will be proven in (3.6) and Proposition 3.22 that the subset of K P (=D
consisting of all points where the SO (3)-conjugation action is not free is the union of a
finite number of submanifolds each of dimension < 2g+1, i.e. of codimension > 4g—4 > 4
inK ¢ | (—=1). Thus the subset of K 7 (=I) where the SO (3)-action is free is connected, i.e.
?3(23_2) (—1) is connected. O

We turn to the quotients.

Theorem 3.7. Suppose g > 2, and 7 = *I. Then ?3(25._2) (2)/S0(3) is a connected
smooth manifold of dimension 3(2g — 2), and the projection map

Fi0g-2)@) = Faag-2(2)/S03)

is a smooth principal S O (3)-bundle.

Proof. Since SO (3) acts freely on ?3(25,_2) (z), the result follows from the general fact
quoted in Proposition 4.2, and the connectivity proved in Propositions 3.5 and 3.6. O

3.3. The structure of ?zg (xI)

Recall that ?2g (z) is the subset of K g 1(z) where the isotropy group of the SO(3)-
action is a maximal torus in S O(3). According to Proposition 3.4 (iv) if a point p =
(a1,by,...,a5,bg) € .T'Qg(z) then , there are covering elements 4; and Ej all lying in one
maximal torus in SU (2), and so Izg(p) = I. Thus

Fa(—=I)=0. (3.6)
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Proposition 3.8. fzg(l ) is a connected smooth submanifold of SO(3)%€ of dimension
2g 4+ 2.

Proof. By definition, —.7-—'2g(l ) consists of those points in K . 1(I') where the isotropy group
is a maximal torus in SO(3). Let T be a maximal torus in SO(3), and t the 180° ro-
tation belonging to T. For notational brevity, let us write G for SO(3). Consider the
map

G/T)xT% > SOB) : (T t1,.... ) > tix™\, . xnex™).  (3.7a)

By Proposition 3.4(iv), the restriction

— = =2
@500 : (G/T) x (T*\{1,7)%)
— SO3)% : (xT, t1,..., ) > (xtix™!, .., xtrex™h) (3.7b)

has image fzg (I) (see the argument preceding (3.6)). It is readily verified (as in (2.6b)) by
computation of the derivative d‘DE’ that @50 (3) is an immersion.

Let W be the Weyl group of 7', i.e. W = N(T)/T = {I, n}, where n is a 180° rotation
around an axis orthogonal to the axis for T (this follows from Observation 3.3). Examining
®50(3), we see that it induces a continuous one-to-one map

500 1 [(G/T) x T\, 18)/W — SO3)%, (3.70)

where the quotient [---]/W is under the action of W on (SO(3)/T) x T % specified
by

I ™ -1 -1 -1
nT - (xT, 5, ..., ) = (xn"'T, 1, ,...,tzg).

This action is free and restricts to a free action on (SO(3)/T) x (ng\{l , 7}%%), and so
the quotient [(SO(3) /T) X (ng\{l , r}zg )]/ W is a smooth manifold, the corresponding
quotient map being a 2-fold covering. The image of 550(3) is ?zg(l ).

Since the map in (3.7a) takes closed sets to closed sets, the map 550(3) takes closed
sets to (relatively) closed subsets of —.7-—'2g(1 ). Thus 550(3) gives a homeomorphism onto
?23 (I), taken as a subspace of SO(3)%. Since @503 is an immersion, so is 550(3) . Thus

Fa,(I) is a submanifold of SO(3)%, (3.8a)
and 5S0(3) gives a diffeomorphism onto ?zg (I). In particular,

dim Fp (1) = 2g + 2. (3.8b)
Theorem 3.9. The quotient space ?Zg(l Y/SO@Q3) is a connected smooth manifold of
dimension 2g. The quotient map F1,(I) — F2,(1)/SO3) specifies a smooth fiber
bundle isomorphic to a fiber bundle with fiber the sphere S* associated to a princi-

pal W-bundle over fzg (I')SO@3), where W is the two-element group acting on S* by
X > —Xx.
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Proof. As we have seen above, the map

(SOB)/T) x T* > SOB) % : (xT. 11, ....125) O

B (enx T L xtgex T (3.9a)
induces by restriction and quotient a diffeomorphism
J— p— —2 —
P : [(SOQR)/T) x (T *\{L, T/ W — Fau(D), (3.9b)

where the quotient [- - -]/ W is under the right action of W specified by (n € W, n # I)

nT - (xT,1,...,g) = (xn ' T, 170, t;g‘). (3.9¢)

The natural left action of G on SO (3)/T gives aleft action of SO (3) on (SO (3)/ T)x ng
(which commutes with the right action of W), and a corresponding action on the quotient

space [(SO3)/T) x (T *\{1, }%8)1/ W. It is readily verified that ® is SO (3)-equivariant.
We have then the commuting diagram

LY

(SOB)/T) x (T \{I, T)2$))/ W FoeI)
ip _ vy (3.9d)
[T\{I, )21/ W L Fo()/S03)

where p is obtained from the projection of (SO (3)/T) x Tig on the second factor, p’ is the
quotient map, and & is the induced map. The induced map @ is one-to-one, and is therefore
a homeomorphism.

We observe that p is a smooth fiber bundle projection: it is the SO (3)/T -bundle associ-

ated to the principal W-bundle ng\{l , T} > (ng\{:l:l }28)/ W by the action of W on
SO03) /T (specified by n - xT + xn~'T). As already noted, @ is a diffeomorphism and
@ is a homeomorphism. Thus the projection fzg hH LA ]_-'zg (I)/S0O(3) is a submersion if
and only if Fa ¢(I)/SO(3) is equipped with the smooth structure which makes @ a diffeo-
morphism; and with this smooth structure, the projection ?Zg ) - ?2g H/S0B)isa
smooth fiber bundle with fiber SO(3)/T ~ §? and structure group W, isomorphic (in the
smooth category) to the bundle given by p. O

3.4. The set of points in SO (3)?8 where the isotropy has two elements
We have
0 def —=
M2 (2) E Frg 2(2)/5003),

where ?zg_z(z) is the set of all points in K ¢ 1(z) where the isotropy group of the SO (3)-
conjugation action is a two-element group.



A. Sengupta/Journal of Geometry and Physics 28 (1998) 209-254 229

Suppose g = 1. Then, by Observation 3.3(ii), if (a, b) € K z 1(£1) then either a and b
lie in the same maximal torus or they are 180° rotations around orthogonal axes. In either
case, the isotropy group is not a two-element group (this by Proposition 3.4(i)—(iv)). Thus
Fog—a(£I)isemptyif g = 1.

We shall work now with g > 2.

Our immediate objective is to understand the subset of SO(3)%¢ consisting of points
where the isotropy group has two elements.

Proposition 3.10. Let

def [ the subset of SO (3)* consisting of all points (3.10)

where the isotropy group has two elements.

Then

(a) F isa (2g + 2)-dimensional submanifold of S 0(3)%.

(b) The quotient map F — F/SO(3) has the structure of a fiber bundle, with fiber
SOB3)/{I, 1), where T is a 180° rotation, and structure group N(T)/{I, t}, where
N(T) is the normalizer of the maximal torus T containing T.

We will break up the proof of this result into a number of lemmas.
We work with a fixed maximal torus 7 in SO(3). Let 7 be the 180° rotation belonging
to T, and fix any n € N(T)\T, i.e. n is a 180° rotation with axis perpendicular to that of 7.
The conjugation action SO(3) x SO (3)%8 - SO(3)% induces, by restriction, a smooth
map

:S03)x NT)Y® > SO(3)* : (x, p) > xpx L. (3.11a)

We are interested in this map because Proposition 3.4(v) guarantees that the image of ¥
contains the subset of SO (3)%8 where the isotropy group has two elements.
The map ¥ is invariant under the following action of N(T) on SO(3) x N(T)?%:

Lypy™), fory e N(T). (3.11b)

y-x, p) = (xy”
Let B denote the subset of N (7)?8 consisting of all points where the isotropy group is not
a two-element group. Proposition 3.4 yields the following explicit description of the set B:
B=T*UB, G.11c)

where

B — { (x)) € N . if xj € T then xiel{l,thif xj € N(T\T then

xj € {yn, ytn} for some y € T independent of j } (3.11d)

The set B’ is clearly contained in the union of {/, 7}28 with a finite number of diffeomorphic
images of T. So B is a closed subset of N(T)?8. Thus, N(7T)?8\B is a 2g-dimensional
manifold, with 2?8 — 1 components.

Lemma 3.11. Two pointsin SO(3) x [N (T)*e \B] are on the same N (T)-orbit if and only
if they have the same image under .
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Proof. Since ¥ is invariant under the action of N (T'), the ‘only if’ part is ciear.

For the ‘if” part, suppose ¥ (x, p) = ¥ (y, q), where x, y € N(T)?8\B; i.e.

xpx~' = yqy~".
Then
wpw_] =gq,
where w = y~!x. It will suffice to show that w is in N(T).

If some component p; of p belongs to T\{1, t}, then ijw_l =gq; € N(T) but since
(ijw”l)2 # I (otherwise p; would be 1), ijw“1 must be in T and so, by Observation
3.3Gil), w € N (T) (and therefore, g; = pj#l € T). The same argument works if g; €
T\{1, ).

So suppose now that if either p; or g; is in T then Pj»q; € {I, 7} (i.e. either p;,g; €
N(T)\T or p i.q; € {1, T}). Now consider a component p;, € N (T)\T. By conjugating p
by an appropriate element of T (and multiplying x, or w, on the right by that element), we
will assume that p;, = n. Consider another component p;, € N (T\T, DPj, # Pj,- Since

wpjw™! = g;, € N(T)\T, we have wnw™! = tn, t € T. Next, wp,w™! = g;, implies
wsnw™! = rn, forsome s € T\{I}andr € T. So rn = wsnw™! = wsw™!tn, and so
wsw !=rt"! €T.Hencew € N(T). O

The action of N(T) on SO(3) x N(T)?8 is free and so the quotient is a smooth manifold
and ¥ induces a smooth map

[SOB) x N(T)#1/NT) > SO3)%. (3.12a)
Let ¥ denote the restriction of the map (3.12a) to the subset SO(3) x [N (TH*8 \B1/N(T).
According to Lemma 3.11, the map ¥ is one-to-one.
Lemma 3.12, The map

¥ [SO(3) x (N(T)*\B)I/N(T) » S0(3)*
is an immersion.
Proof. Let (x, p) € SO(3) x N(T)*8, and X be a vector in the Lie algebra of SO (3), and

P € L(T)?. Thus (xX, pP) is a typical element of T(y, »[SO(3) x N(T)?#]. Recall that
W (x, p) = xpx~!. Writing P = (P;);, we have

d¥ (xX, pP) = xpx~ (Ad(x)[P; — (1 — Ad(p; ') XD);. (3.12b)

Suppose (xX, pP) is in the kernel of d¥. Write X = X, + X, where X}, € L(T) and
X € L(T)™ (this is the orthogonal complement relative to any Ad-invariant metric on the
Lie algebra of SO(3)). Then, from (3.12b), we have, for each j,

(1 —Adpj_l)XL=0, (%)
(1 — Adp; )X = P;. (%)
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From (x) it follows that exp(e X | ) commutes with p;, for every real €. Since p ¢ B, the
isotropy group at p has only two elements and therefore X = 0. Then, using (¥x), we
have

(xX,pP)= %) » (x exp(e X), exp(—e X) p exp(e X))

exp(—€X) - (x, p)

de le=0
Thus we have proved that if (xX, pP) is in the kernel of d¥ then (xX, pP) is tangent to
the N (T)-orbit through (x, p). O

Combining the above results, we see that the image of ¥ is a submanifold of SO (3)%8 and
¥ is a diffeomorphism onto its image. This image is the union of all S O (3) orbits through
the points of N (T)%# where the isotropy group has two elements. Thus this image consists
only of points where the isotropy group has two elements. Moreover, by Proposition 3.4(v),
any point in S 0(3)?8 where the isotropy group has two elements is on the SO (3)-orbit
through some point in N (T)?. Thus

F([SOB) x (N(TY$\B)I/N(T)) = F.

As noted after (3.11d), the space (N (T)* \B) is a smooth 2g-dimensional submanifold of
SO(3)2, with 228 — 1 components. The quotient [SO(3) x (N(T)*¢\B)]/N(T), being
the quotient under a free action, is a smooth (3 + 2g — 1)-dimensional manifold, and the
corresponding quotient map is a principal N (T)-bundle projection map. Thus F isa (2g+2)-
dimensional submanifold of SO(3)%. The N(T)-conjugation carries each component of
N (T)8 into itself. Thus F also has 2°6 — 1 components.

‘We have proved Proposition 3.10(a) and more:

Propeosition 3.13. The set F of all points in § 0(3)%8 where the isotropy group has two
elements is a smooth (2g + 2)-dimensional submanifold of S O (3)%8. Moreover,

W [SO@3) x (N(T)*\B)]/N(T) — F is a diffeomorphism. (3.13)

The group SO (3) acts on SO(3) x (N(T)?$\ B) by left-multiplication on the first factor,
and this action commutes with the action of N (7). Thus we have an induced natural action
of SO(3) on [SO(3) x (N(T)?¢\B)]/N(T). The corresponding quotient is

[SOB3) x (NTD*\B)/NT) 5 (NT)*\B)/N(T), (3.14a)

which is essentially the projection on the ‘second factor’.
Clearly, ¥ is equivariant under the action of SO(3). We have then the commutative
diagram

[SO3) x (N(T)*8\B)]/N(T) f» Im(¥)=F
Ip I p (3.14b)

[N(T)*6\B1/N(T) % Im¥/S0(3) = F/SOQ3)
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in which the quotient [N (T')28\ B]/N(T) is with respect to the conjugation action, and the
bottom arrow is induced by the inclusion ¥ (T)2 \B - F C S0(3)%.

Lemma 3.14. The bottom arrow W in (3.14b) is a homeomorphism.

Proof. Since Wisa homeomorphism and p and p’ are quotient maps, it will suffice to prove
that ¥ is one-to-one. Injectivity of ¥ is equivalent to ¥ mapping distinct SO (3)-orbits into
distinct orbits. To this end, let (x, 5), (¥, u) € SO3) x N(T)# be such that there is a
w € SO3) with w¥ (x, s)w™! = ¥(y, u). Then ¥ (wx, s) = ¥ (y, u) and so, by Lemma
3.11, (wx, s) and (y, u) lie on the same N (T)-orbit in SO(3) x N(T)?8. Therefore, the
points [(x, 5)] and [(y, u)] in [SO(3) x N(T)?8]/N(T) lie on the same SO (3) orbit, with
w - [(x, )] = [(y, w)]. &

To understand the diagram (3.14b) at the smooth level we will show that the vertical
arrow p corresponds to a smooth fiber bundle with fiber SO(3)/{I, t}, associated to a
certain smooth principal bundle over [N (T)?¢ \B]/N (T). The principal bundle will have the
structure group N M/, t}. H:_ixing this, it clearly follows that the differentiable structure
on Im ¥ /S0O(3) which makes ¥ a diffeomorphism is the one which makes the quotient
7’ Im¥ — Im¥/SO(3) a submersion; consequently, with this differentiable structure,
p’ is a fiber-bundle projection.

The conjugation action of N(T) on N (_T_)2g\B has isotropy group {/, t} everywhere,
and so the quotient space [N (T)zg\B] /N (T) is a smooth manifold and the projection
[NT)*\B] — [N(T)*\Bl/N(T) is a principal N(T)/{I, r}-bundle.

Let

N'(T)=ND/I, 1} (3.15a)
Note that {, t} is the center of N(T).
Note also that [N (T)**\ B]/N(T) is naturally diffeomorphic with [N (T)>*\B]/N'(T),
where the action of N’(T) on [N (T)zg\B] is simply the one induced by that of N (D).
The smooth action of N(T) on SO(3) given by

(h,x) > xh™! (3.15b)

induces a smooth action of N’(T) on SO(3) /{1, t}. Then we have the associated smooth
fiber bundle

SO®3)
( {1, 7}
¢ —_
(N(T)*$\B)/N'(T),

x (N(T)zg\B)) /N'(T)
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where the quotient on top is with respect to the action of N’ (T) on § 03)/{1,t} x
(N (T)?¢\B) given by

h-(x{I,t}, p) = (xh~Y{I, 7}, hph™Y). (3.15¢)

Note that this action is free and so the quotient is a smooth manifold.
The identity map

SO@3) x (N(T)*2\B) - SO3) x (N(T)*¢\B)

induces a surjection

SOB3) x (N(T)*2\B) —> S0

=2
7.7 x (N(T)**\B),

which carries distinct N (T)-orbits onto distinct N’(T')-orbits. Thus there is a well-defined
bijection

SO@3)

[SO3) x (N(TY*\B))/N(T) - [
{1,7}

x (N(T)zg\B)] /N'(T).
The two quotients here are with respect to free actions and so are smooth manifolds and the

bijection above is a diffeomorphism.
We have the commutative diagram

[SOB) x NTP\BYNT) — [ S{Iof}) x (N(T)Zg\B)] JN'(T)
_dr S (3.15d)
[N (T)%\B1/N (T) > (N (T$\B)/N'(T)

where the top and bottom arrows are diffeomorphisms and the vertical arrows are quotient
maps. The important point here is that the vertical arrow on the right is a fiber bundle;
it is the fiber bundle with fiber SO(3)/{I, t} associated to the principal N'(T)-bundle
[N(T)*\B] — [N(T)**\B]/N(T), where the structure group N'(T) acts on the fiber
SO3)/{1, t} in the manner induced by (3.15b).

Stringing together the two commutative diagrams (3.14b) and (3.15d), we obtain the
commuting diagram:

[SOB) x (N(T)3\B)I/N'(T) — F

A Vr (3.15¢)
[N(T)*\B1/N'(T) - F/S0(3)

Here p; is a fiber bundle projection, p’ is a quotient map, the top horizontal arrow is a
diffeomorphism and the bottom horizontal arrow is a homeomorphism. Thus the differen-
tiable structure on F/S O (3) which makes the bottom arrow in (3.15e) (or, equivalently, in
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(3.14b)) a diffeomorphism makes p’ a submersion. We equip F /SO (3) with this differen-
tiable structure. Thus we have proved Proposition 3.10(b); in fact, we have:

Proposition 3.15. Let F be the subset of S O (3)?8 consisting of all points where the isotropy
group of the S O (3)-action has two elements. Then the diagram

Vel

[SO(3) x (N(T)*\B)1/N(T) F
yp 24 (3.15f)
[N (T)*\B1/N(T) L F/s00)

is an isomorphism, in the smooth category, of fiber bundles with fiber SO(3)/{I, t} and

structure group N'(T) N (T)/{I, t}, where t is the 180° rotation belonging to the

maximal torus T. The bottom arrow is induced by the inclusion N(T)?¢\B C F.

Furthermore, the fiber bundles given by p and p’ are each isomorphic, in the smooth
category, to the fiber bundle with fiber SO(3)/{1, t} associated to the principal N'(T)-
bundle given by the quotient [N (T)*8\B] — [N(T)’€\B]/N(T), where the action of the
structure group N'(T) on the fiber SO(3)/{I, 1} is the one induced by h - x = xh™" for
he N(T), xeSO@A).

It will be useful to coordinatize N (T)?8 as follows. Let J be a set of 2g elements, and
view —T_Zg as TJ. For S C J, we use the diffeomorphism

s : T8 — NTYE : (1))es > @L))jer, (3.162)
where
j _}x ifj €S,
Ps(x) = Ixn itj ¢ 5. (3.16b)

The sets ¢ (T %) are the different components of N (T

We will use ¢ to transfer to T (a) the conjugation action of N(T) on N (T)?4, and (b)
the set B. Recall that B is the set of points in T2g where the S O (3)-action has a two-element
isotropy group.

Proposition 3.16.
(a) Consider the action of N (T) on ng given by (for s € T)
t; if jes,
s (t))jes = (t])jes, Where 1= Isjztj ifj ¢ 5, (3.16¢)

and

sn-(tj)jes = (1] )jes, where t (3.16d)

. it fies,
st e

Then ¢5 : ng — N (T)zg is equivariant.
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(b) If S = J then ¢s(T5) C B; if S # J then 3" (B) is the orbit of the subset {I, )8
under the action of N(T):

Bs < ¢5'(B) = N(T) - {1, 1)%.

(¢) If S1, $; are distinct subsets of J then

[Im(gs,)/SOB)] N [Im(gs,)/SO(3)]
= [¢s5,(Bs;)/SOB)] N [¢s,(Bs,)/SO3).

Proof.

(a) Readily verified by inspection.

(b) Recall from (3.11c) that B = T#UB , where B’ is specified in (3.11d). If § = J, then

s is the inclusion map T% 5 N (T)?%, and so ¢ (ng) =T CB.
Now suppose § # J. Consider a point t = (¢j)jey € By; let 9s(t) = x = (xj)jey.
Then, since S # J, there is some k € J\S, and so x; = #n € N(T)\T, and so, in
particular, x € B\ng = B’. Therefore, by the definition of B’ in (3.11d), x; € {I, 7}
for every j € § and there is some y € T such that x; € {yn, yrn} for every k € J\S.
Thus, #; € {I, 7} for every j € § and there is some y € T such that #; € {y, yr} for
every k € J\S. Then ¢ belongs to the N (T)-orbit through a point ¢’ € {1, 7}?3. Thus
Bs ¢ N(T) - {I, T}*8.

Conversely, again with § # J, the isotropy group of the N (T)-action (as given in
(3.16¢) and (3.16d)) at any point of {/, t}*¢ C ng is a four-element group (s or sn,
where s € T, belongs to the isotropy group if and only if s2 = I), and so no point on
N(T) - {I, t)?# has isotropy group with exactly two elements, and so N(T) - {/, )28 C
Bs.

(c) Suppose ¢gz(tjf)jej = x¢s, (tj)jejx_l for some (#)jey, (tjf)jej € ng, and x €
SO (3). We shall show that (¢;);e; € Bs, and (tJf)jeJ € Bg,. This will imply the
desired resutt. In (b) we have seen that (#;) € By means that « ;€ f{l,t}forallj e §
and there is some y € T such that yu; € {I, 7} forallk € J\S.

First we note that x ¢ N(T). For if x were an element of N (T), then, picking j € 51\5>
(if this set is empty we can interchange S; with S5, and ¢ with ), we would have ¢5, ’ (tjf ) =
x¢51j(tj)x_1 = tjlLl e T, which is impossible since és,; (tj’-) e N(T)\T asj ¢ S,.

Let j, € S1 N §; then tjf* = xtj*x‘l. Since x ¢ N (T), it follows from Observation
3.3(iii), that t; and tjf must be equal to /.

Consider j € §1\S>. Then b5, @) =14 € T while ®sy; (tjf) = t]fn is a 180° rotation. So
t;, being conjugate to t]/.n, is the 180° rotation t € T. Similarly, tJf =t forall j € $H\S;.

Now consider j, k € J\(S1 U §;). Writing out the conditions x¢s,; (@t ol = és,; (tj’.)
and x¢s,, (t)x ! = ¢s,, (t;) we have x(z‘jn)x_1 = tj’-n and x(frn)x~! = tyn. Then

xg HxT =ty
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Since x ¢ N(T), Observation 3.3(iii) implies that t; =t;. Thusthereisa y € T such that
tj = yforall j € J\(S1US2). Thent] = ¢s,, (¢ )n~" = x¢s,; (txIn ! = xynx~In~t =
y’, independent of the choice of j in J\(S; U S7).

Consider j € $3\S1 and k € J\(S| U §2). Then

’ N Ny—l 1
1= ¢5,;(t;) = x¢ps,; (t))x " = xtjnx

and
-1 -1

t,in = s, (t,:) =x¢s, t)x~ =xtgnx” .
So, using (t,:n)_1 =n,

"Y'n o= xt: —-1_—1

titgn = xtjity, x" .
Now tjf = 7 since j € $2\S1, and #; = ¥, independent of k € J\(S1 U 5); so

=1 -1 l

Lt =x"(ty'n)x.

Thus ¢t lis conjugate to a 180° rotation and therefore must be 7. Since #; = y, independent
of k € J\(S1 U S2), we have 1; = yt forevery j € $2\5).

Thus we have proved the following for (¢)jes : (i) if j € S$ then ¢; is either [ (if
jeSiNnSort (if j € $1\S2); (ii) thereisa y € T such that if j € J\S] then either
ti =y @(fj € IN(S1US)) ort; = yr (if j € $2\51). All of this simply says that
(t)jes € Bs,. Similarly, (1))jes € Bs,. O

3.5. The structure of F2,_2(£I)

Recall (3.5a) that ?zg_z(z) =K z Y(z)N F, where F is the subset of S O (3)%¢ consisting
of all points where the isotropy group of the SO (3)-action is a two-element group.
It will be convenient to take N (T)28 as N(T)’, where J is the 2g-element set

J=1{1,2,5,6,...,4g —3,4g — 2}.
With this notation,

K= [ 557 By, (3.17a)
j=1,5.....4g—3
where p; is any element of SU(2) which covers p; € SO@3). (For p € N (T), each

commutator appearing in the product above is actually an element of T'.)
If x, y € N(T), then straightforward computation shows

I ifx,yeT,
TR T ifxeTandye N(), (3.17b)
y ifxe N(T)andy € T,

GFE~H2 ifx,y e N(T).
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Recall from (3.16a) and (3.16b) the charts ¢ parametrizing the components of N (T)*.
We will use s to transfer to T the map K o

Proposition 3.17.
(Kgods)pzer =[] F780" =T15" (3.17¢)
j=15,..,4¢-3 jed
where t; is any element of T covering t; € T,and for j=1,5,...,4g =3,
0,00 fjj+1les
2,00 ifjeSandj+1¢S,
M) = 1
(mjsmje) =1 0, Z3 ifj¢Sandj+1¢€S, (3.17d)
(=2,2) ifj¢Sandj+1¢S.
Proof. Follows by combining (3.17a) and (3.17b). |
Recall that, for z = +1,
Fr2) =K, '@NF (3.18)

Proposition 3.18. Suppose g > 2. Then ?2g_2(:|:1 ) are (2g + 1)-dimensional submani-
folds of SO (3)%8.

The proof of this is contained in that of the next result, where we identify the components
of Fag 2(£I):

Proposition 3.19. Suppose g > 2. Then Fz_o(I) and Fag_o(—1I) each have 2°% — 1
connected components.

Proof. Recall that .ng_z(z) =K 2 I(z) N F, where F is the set of points in § O(3)%€ where
the isotropy group of the SO (3) action has two elements.

By Proposition 3.13, F is the diffeomorphic image under ¥ of the quotient (SO (3) x
(N(T)%8\B))/N(T), the latter being a space with 228 — 1 components. Moreover, the
space .ng_z(z) =K g (z) N F is diffeomorphic to the union of the 228 — 1 connected
sets (§0(3) x ((Kg o <i>5)_1 (z)\BS))/N(T), with S running over all proper subsets of the
2g-element indexing set J = {1,2,5,6,...,4g — 3, 4g — 2}. Here ¢ : T N(T)2
is the map given in (3.16a).

As we have noted,

(Kgop)) =[]7". (3.19a)

jed

where t = (tj)jey € ng is covered by (fj)jej € T% and mj € {0, 22} are as specified in
(3.17d).
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We work with a proper subset S C J. Fix ji € J such that mj, # 0 (by (3.17d) such
J1 exists). It is readily verified from (3.19a) that the restriction of the coordinate projection

TJ — TJ\UI} to (Izg o ¢s)~'(2) is a bijection. Thus (Izg os) (z) is diffeomorphic to

ng—l
Since dim Bg = 1 and dim(IZg ops) 1(xI) = 2g—1,and g > 2, it follows that each set
(Kgo ¢s) ' (2)\Bs is connected and has dimension 2g — 1. The corresponding component

of Fag—2(2) is
Fo4—2(z)s = union of all $O(3)-orbits through os(T*\Bs) N K;'(2). (3.19b)

This is diffeomorphic to (SO (3) x ((I? gO #s) "' (2)\Bs))/N(T), and therefore has dimen-
sion 2g + 1. m|

3.6. The quotient Fog_2(£I) — Foe_2(£1)/SO(3)

We have seen (in Proposition 3.15) that the quotient map F — F/SO(3) is a fiber
bundle projection, where F is the subset of SO (3)% consisting of all points where the
isotropy group has two elements. For z € {I, —I}, the set ]_fgg_g(z) is, by Proposition 3.19,
a submanifold of F, invariant under the action of SO (3). Thus the bundle projection F —
F/SOQ3)restrictsto afiber bundle?zg_z(z) — _fzg_z(z)/S0(3), with fiber SO (3)/{I, t}
(where 7 is a 180° rotation) and structure group N (T)/ (I, t}, where T is a maximal torus
(containing 7) in SO(3) and 7 is the 180° rotation in T. We set this out in detail in the
following result.

Theorem 3.20. Let z be I or —1. The quotient space .ng_z(z) /SOQ@3) is the union of
228 1 disjoint components. For any proper subset S C J, let fzg_z(z)s be as in (3.19b).
Then the sets ?2g_2(z)5/50(3) are the 2°8 — 1 disjoint components offzg_z(z)/SOG).
Moreover, for each proper subset S of J, there is a commutative diagram

SO@3 - — _
[ W (T}) x {(Bq 0 ¢s>—1(z)\Bs}] INT B Fae (s
14q B vq
[(Kg 0 ¢5)™" (\Bsl/N'(T) Y Fopa()s/SOB) = M3, (s

(3.202)

in which the vertical arrows are quotient maps, and the horizontal arrows are diffeomor-
phisms. The vertical arrow given by q is the fiber bundle with fiber SO (3) /{1, T} associated
to the principal N'(T)-bundle given by the quotient map

[(Kg 0 ¢5) L ()\Bs] — [(K; o ¢5) "L (2)\Bsl/N'(T), (3.20b)

with N'(T) acting on SO (3)/{I, t} via conjugation, as in (3.15b). Thus the vertical arrow
q’ also specifies a fiber bundle with fiber SO (3) /{1, t} and structure group N'(T), and the
diagram (3.20a) is an isomorphism of smooth fiber bundles in this category.
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The following gives an explicit description of the spaces Frg-2(2)5/5S0(3).

Proposition 3.21. Let S be a proper subset of J. Let W be the two-element group {1, w}
acting on ng—z by wx = x~L. There is a smooth one-to-one map
Js T2 5 503)%
such that -
(1) detdjs is constant (# Q) everywhere on T,
oy . 282 —
@) js(T T\ 1)) € Fag2()s,
(iii) js induces a diffeomorphism j : (TQg_2\{I, T)28) /W — Fap2(2)s/SO(3).

Proof. Since S is a proper subset of J, the specification of the m; given in (3.17d) allows
us to choose distinct j1, jo € J such that mj, # O and j, ¢ S. Let

]é :T-’\{jlvjl} N T2g Cx e x!
be specified by
Xj if j € J\{J1, iz},
I if j = jo,
I — —m;/m; e . .
x/ l_[jej\{jl’jz}xj S 1f_]=]1 andZ:I, ’
—-mj/mj ... .
t[liengiim % TN if j=jrand z = —1,

where 7 is the 180° rotation belonging to 7. Note that m i/mj, € {0, £1}. Then we define
Jjs = ¢s o Jg-
The definition of jg shows that dj¢(X) = X' = (Xj/-)jej, where

Xj it j € J\{J1, 2},
x, =10 it j = jo,
m;j . . .
= Ljentiy my X 7=

It follows from this (or from the corresponding expression for d jg*d Jjg) that

m2
detdjg = 1+ Y., —F
jenGin ™

(the specification of the m; given in (3.17d) shows that detdji = /2g — #S — |m,]/2.
Since ¢y is an isometry, detd js = det d .

By (3.19a), we have (Ieg 09s)(x) =[ljes ij'."j, where %; € T covers x; € T. Using the
definition of the x]’., and the fact that 72 = —1, we see then that

Kgo0jsx) = (Kg 0 9s)(j§(x)) = (Kg 0 9s)(x') = z.
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Since j» ¢ S and the j;th component of any element in the image of j _’9 is, by definition, 7,
it follows, that for any x € 723-2, the image j¢(x) lies in By if and only if x € {/, )%,
Thus js maps ng_z\{l, 128 into Fap-2(2)s.

If two points in js (ng_z\{l , T}?8) are on the same S O (3)-orbit then the corresponding
points in j (ng_z\{l , T}28) are on the same N (T)-orbit (this follows from Lemma 3.11).
Examination of Proposition 3.16(a) then shows that (s2 = 1 in (3.16c)) the points in
ng_z\{l , T}?8 are on the same W-orbit. Thus js quotients to a one-to-one map

Ts o T 1)) /W > Fay 2(2)s/SOG).

Ifye —fzg_z(z)s then by appropriate conjugation we can assume that y € ¢S(ng) and
¥j, = n. Then the point x’ = ¢S“1(y) has xj, = I. Since I?g o ¢s(x") = z, the component
xj’.] is determined by the other components, and it follows that x’ lies in the image of js.
Thus j; is also surjective.

Since js is animmersion, sois js. Moreover, g is a homeomorphism of (ng_z\{l , T}%8)
/W onto its image (the fact that j_sl(ng_z\{I , 7}28)/ W is a closed map can be verified
using the observation we made above that a point x € T 2 the image of jg lies in
Frg—2(2)s if and only if x € TZg_z\{I , T}?8). Combining all these, we see that jg is a

diffeomorphism of (T™#7\(I, 1)2%)/ W onto its image. m]
3.7. The sets Fo(z) and Fo(z)/SO(3)

Recall (from (3.5a)) that Fo(z) is the subset of K g 1(z) where the isotropy group is
either SO(3) or N(T), the normalizer of a maximal torus 7 in SO(3), or is of the form
{1, 71, 72, 13} for some 180° rotations 71, 72, 73 around orthogonal axes.

Let

the subset of§ O (3)¢ consisting of all points where the
isotropy group is eitherSO(3)

or the normalizer of a maximal torus inSO(3),

or a four-element group.

Fo= (3.21a)

These cases are covered by Proposition 3.4(i)-(iii), from where we see that a point
(x1,...,x2) € SO(3)* belongs to Fy if and only if {x1,...,x25} C {I,n1,n2,n3},
where ny, ny, n3 are 180° rotations around three orthogonal axes. Thus, fixing 180° rota-
tions 11, 72, 73 around three orthogonal axes, we have

Fo= |J xFjx™', where Fj={I, 1,1, 3} (3.21b)
xeSO3)

Let S3 be the group of permutations on {7, 11, 2, T3} which fix 7; thus §3 has a natural
action on FJ. Two points in Fj) lie in the same §3-orbit if and only if they lie in the same
SO (3)-orbit in Fp (every permutation of {7, T2, T3} can be realized as the conjugation by
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some element of SO (3), since the permutation 1) <> 72 is realized by conjugation by 1'31 2

—a 90° rotation around the axis for 73). Thus we have a bijection
Fo/SO(3) ~ F}/S3 (3.21c)

induced by the inclusion F C Fp.

Proposition 3.22. The sets Fy and F split into the following disjoint sets according to
isotropy type:

Fo= FypoU Fo1 U Fp; and FO/ = FéO U Fél U F62, (3.21d)

where F(;j =Fo;N{I, 11, 12, 13)28, and
i) Fyo = Féo is the singleton consisting of the point (I, I, . .., I), and the isotropy groups
are the full groups.
(ii) Fo is the set of points where the isotropy group is the normalizer of a maximal torus
in SO(3), and Fj; = UJLI{I, T Y6\, I, ..., 1)} is the set of points in Fy where
the isotropy group is a two-element subgroup of S3. Each S O(3) orbit through a point

5 GOt

of the set Fy| is equivariantly diffeomorphic io the connected 2-dimensional space
SO(3)/N(K), where N(K) is the normalizer of the maximal torus K in SO (3). The
number of components of Fy is

#Fo1/SO3) = #F}; /S5 = 2% — 1. (3.21e)

(iii) Foo is the set of points where the isotropy group is a four-element group, and Fy, =
Fg\ UJ3 W, rj}zg is the subset of Fy where the isotropy group is trivial. Each orbit
through Fy; is equivariantly a’tﬁeomorphzc to the connected 3-manifold SO(3) /{1, 1|,
12, 13). The number of connected components of Fy; is

#F2/SO(3) = #Fy,/S3 = #Fg, = §(4% —3.2%8 1 2). (3.219)
The total number of components of Fy is

#Fo/SO(3) = #F}/S3 = #L (4% +3.2% 1 2), (3.21g)

Proof. The decomposition of Fy according to isotropy is provided by Proposition 3.4(i)—
(iii), which also shows that Fy; consists of the points in the orbits through F ;. Inspection
shows that the isotropy group (in S3) at each point of Fy, is the two-element group generated
by a transposmon 7; < T;, while the isotropy group in S at each point of Fy, is trivial.
Since #F, = = 3(226 —1), and the isotropy at each point has two elements, we obtain (3.21e).
Next,

#Fgy = #F) — #Fo — #Fy =48 — 1 —302% — 1) =47 —3.28 12,

and so, since 3 acts freely on #Fé we have #FM/ Sy is th of #F(S2 Finally, #Fy/S3 is
the sum of the #F; /83 m]
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We are interested in the set
Fola) = N K, ' (2), (3.222)
and the quotient
M{(2) = Fox)/SOB) =~ Fyn K7 (2)/Ss. (3.22b)

The set Fo(z) is the union of the subsets F ;N K g L(2).

For the purpose of counting, we shall view a point of {7, 71, 72, 73}%¢ as a g-tuple of pairs
(@i, bi) € {I, 71,12, ;3}%.

By Observation 3.3(ii), for (a, b) € {I, 11, 12, T3 }2 (with & denoting, as usual, any element
of SU(2) covering x € SO(3))

—1 if a and b are distinct elements of {11, 1, T3},

aba b ! = :
1 otherwise.

Let us say that a pair (a, b) € {I, 11, 12, 3)2 is positive if aba~'b—! = 1, and negative if
aba~'b~1 = —I. Of the 16 elements in {I, 71, 1, 1:3}2, 6 are negative and 10 are positive.
It is readily seen that for a point p = (py, ..., pg) € F{,

peFN 12;1(1) if #{j : p; is negative} is even,
peFN K;l(——l) if #{j : p; is negative} is odd.

Thus the total number of points in F(’) NnK g L(I) is the sum of the coefficients of the
even powers of x in the polynomial (10 + 6x)%, while #F; N fg_l(—l) is the sum of the
coefficients of the odd powers of x in the polynomial (10 4 6x)$ :

#FGO K (1) = 3(168 +48), #FGN K (=1) = § (165 — 48) . (3.22¢)
It is clear that F, U Fj; € K, '(I). So
#F VK (D =#Fy N K, ' (I) — #F) — #F,
=1(165 +4%) —1-32% - 1), (3.22d)
and
FyNK;'(=) = FpynK;'(=D). (3.22¢)

Combining all these observations, we obtain:

Theorem 3.23.
(i) Fo(I) is the union of disjoint SO(3)-invariant subsets

Folly = FooI) U For(I) U FoalD),

where Foo(I) = {(I,1,..., )}, For(I) is the subset consisting of points where the
isotropy group is the normalizer of a maximal torus in S O (3), and F o> (1) is the subset
consisting of points where the isotropy is a four-element group.
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(ii) Fo1(I) is a two-dimensional submanifold of SO (3)2. The quotient Fo1(1)/SO(3)
is a finite set, and each fiber of the projection Fo1(I) — Fo1(I)/SO3) is diffeo-
morphic to SO(3)/N(K), where N(K) is the normalizer of any maximal torus K in
SOQ3).

(ii)) Foa(I) is athree-dimensional submanifold of S O (3)%8. The quotient F oy (1) /SO(3) is
afinite set, and each fiber of the projection Foo(I) = Foa(D) /S O3) is diffeomorphic
to SOB3)/{I, 71, 12, T3}, where 11, 13, T3 are 180° rotations around orthogonal axes.

(iv) Fo(=I) isathree-dimensional submanifold of S O (3)*8. The quotient Fo(—I1)/SO(3)
is afinite set, and each fiber of the projection Fo(—1) — Fo(—1)/S O(3) is diffeomor-
phic to SO(3)/{I, 11, 12, 13}, where 11, T2, T3 are 180° rotations around orthogonal
axes.

Focusing on the quotients Fo(2)/S0(3), we have:
Theorem 3.24. The sets Mg(l ) and Mg(—l ) are discrete, and
AMYU) = £12% +7-2% +4], #MY(=1) = 5[165 — 4%].

Proof. #M(I) = #Fo(I)/SO(3) = #F; N K;'(1)/SO(@3) is obtained by adding up
the #Féj N 12;1(1)/30(3) (which are given in (3.22¢) and (3.22d). For Mg(—l) =
Fo(=1/SOB) = FynK;'(—1)/SO(3), we use (3.22¢) and (3.22¢). O

4. Some technical facts
In this section we record some technical facts used elsewhere in this paper.

Lemma 4.1. Let X, Y be vector spaces, and L\, Ly : X — Y surjective linear maps such
that

ker(L) + ker(L,) = X. (4.1a)
Then

Li(fker(Ly + L)) =Y. (4.1b)

Proof. Condition (4.1a), together with the fact that L| and L, are surjective, implies that
Ly maps ker Ly onto Y. Similarly, Ly(ker L|) = y. Let y € Y. We can choose x; € ker Lj
and x; € ker L suchthat L1x; = yand Lyx; = —Y.Letx = x; +x;. Then L;x = y and
Lox = —y.Sox € ker(L + Ly). |

Application of Lemma 4.1. We used Lemma 4.1 in the proofs of Proposition 2.7. Let
g > 2, and consider the maps C, : G*8 — G : (x1, y1, .. S Xg, Yg) > y; % 'y x,, and
K=C,...Cy,and K '=C ¢ - .. C2. We will show that Cy restricted to the submanifold
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Fln) = Cl_l(G\{I, AP N Kg_l(h) is a submersion, for any & € G. Working at a fixed
point on F ! (h), let

Li=c7lde), Ly =(adcyhk' k.

Then ker Ly D gdgd{0t®---® {0}, and kerL| D {O}@{O}@g@---@g,andso
kerL; +kerL; = 523. Moreover, by Lemma 2 .4(ii), at any point in F Y(h), Ly and L, are
surjective. Using K = K'C, wehave K~'dK = L + L;. So, by Lemma 4.1, this implies
that L{| ker(K ~'dK) is surjective. Since ker(K ~'dK) is the (left-translated) tangent space
to F(h), we conclude that C;|F! (k) is a submersion.

4.1. Group actions on manifolds

‘We have used the following result several times:

Proposition 4.2. Let G be a compact Lie group, M a smooth manifold M x G — M :
(m, g) — mg a free smooth right action, and let p : M — M /G be the corresponding
quotient map onto the quotient space M/G. Then there is a (unique) smooth manifold
structure on M/ G for which p is a submersion; with this structure on M/ G, the projection
p: M — M/G, along with the action of G on M, is a smooth principal G-bundle.

This resultis proved in [1, 16.14.1 and 16.10.3] ({1, 16.10.3] is stated with the hypothesis
that {(m, mg) : m € M, g € G} is a closed submanifold of M x M; this condition may
be verified by examining themap f : M X G - M x M : (m, g) — (m, mg) and using
the compactness of G along with the hypothesis that the action of G on M is free; f is a
smooth one-to-one immersion and its image is closed in M?).

Lemma4.3. Let G be a compact Lie group acting smoothly and isometrically on a
Riemannian manifold M :

GXM-—> M:(x,m)— ypx)=xm.

Suppose that the isotropy group is the same subgroup H C G at every point of M. Fix
an Ad-invariant metric on the Lie algebra g of G, and let h be the Lie algebra of H. Let
dym : § = TinM be the derivative of ym at the identity in G. Then

m > |det(dyn|ht - ht — T, M)| (4.2a)
is a G-invariant function of m, thus defining a function | detdy |h*| on M/G.
If f is any G-invariant Borel function on M, then
f f dvol y = vol (G/H) f f | detdy|h*| dvol m/c (4.2b)
M M/G

(either side existing if the other does) where vol denotes Riemannian volume on the appro-
priate spaces (taken as counting measure when the space is discrete), and f is the function
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on M /G induced by f. ( In particular, if H is finite then (4.3b) holds with vol (G) /#H for
vol (G/H)).

Proof. We shall denote the action of the derivative of m > xm onv € T,, M by x - v. From
Yym(x) = Y¥m(y~'xy), we have dyy, = y - dym o Ad (y~!); thus (4.2a) is G-invariant
since the G action m > ym is an isometry and since the metric on g is Ad-invariant.

The isotropy group H being the same everywhere, it follows that H is a normal (closed)
subgroup of G. The induced action of the group G/ H on M is smooth and free, and therefore,
by Proposition 4.2, M/G ~ M/(G/H) is a smooth manifold and the quotient map 7 :
M — M/G specifies a smooth principal G/H-bundle. Consider then a G-equivariant
diffeomorphism

(G/H) x USa~\W), (4.3a)

where U is a non-empty open subset of M /G, and my(xH, u) = u for every u € U and
x € G. Note that G-equivariance means that ¥ (gxH, u) = y,,(g) where m = Y {xH, u).
We split the tangent space T,, M into orthogonal subspaces (note that o™ corresponds to the
Lie algebraof G/H) :

TuM = dym () + dym (B > dym () © Tu(M/6G), (4.3b)

where the =~ is obtained from the unitary isomorphism [dy,, (A1)]* — T,(M/G) given by
dr (the condition that this restriction of dx is unitary defines the metric on M/G). Thus
the matrix of dy(x i 4) has the form

dy, |kt =
[””’0'— 1] (4.3¢)
Consequently,
| det A ar,)| = | det(dym B (4.3d)

It follows that Eq. (4.3b) holds for f supported in ¥ ~! (/). By using a partition of unity
argument it follows that (4.3b) holds for all compactly supported continuous G-invariant
functions f. Then, by definition of the measures vol s and vol ¢, Eq. (4.3b) holds for
any G-invariant Borel function f > 0, and hence for any Borel f for which either side of
(4.3b) exists. O

5. The symplectic structure

We work with a principal G-bundle 7 : P — X overaclosed oriented surface X of genus
g > 1, where the structure group G is SU(2) or SO(3), equipped with an Ad-invariant
metric. There is a standard symplectic structure £2 on the infinite-dimensional space A of
connections on P. The action on A of the group G of bundle automorphisms preserves the
symplectic structure, and there is a moment map J whose value J(w), for any w € A,
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can be identified with the curvature of w. The Marsden—Weinstein procedure then yields,
formally, a 2-form £2 on the moduli space of flat connections M° = J~1(0)/G (a rigorous
account of this presented in [7]). Now let A|, By, ..., Ag, B, be standard loops generated
m(X, 0), where o is a fixed basepoint on X and Egzg BgAg - Eng B, A is the identity
inm (X, 0). Denoting by 4(C; @) the holonomy of a connection w around a loop C based
at o (using a fixed reference point on the fiber 7 ~!(0)), we have the map

H:A— G¥:wr> (h(A1; ), h(Bi; ), ..., h(Ag; w), h(Bg; »)).

This map carries the set .A? of flat connections onto the subset K c 1(z), where

o

Eg :G® > G- (a1,bi,...,ag,bg) > l;glégll;g&gu-l;l_lal biay,

with ¥ denoting any element in the universal cover G of G projectingtox € G, and zis a
certain element of ker(G — G) which characterizes the topology of the bundle P. In fact,
‘H induces a bijection

H: A6 > K;'(2)/G,
where the quotient on the right is with respect to the action of G given by conjugation
of each coordinate in G2¢. We will always identify M° = A%/G with K z 1(z)/G in this

way. There is a 2-form £2’ on G*¢ whose restriction to K g 1(z) is the lift of the 2-form £2
mentioned earlier.

We will work with the group G?¢, where g > 1 and G is either SU(2) or SO(3). It will
be useful to label the coordinates of a point of G?¢ with subscripts in the following way;
let

J=1{1,2,56,...,4¢ —3,4g - 2}. (5.1a)
Thus J is a set with 2¢ elements; we shall take a typical point of G>8 to be (@j)jcs. We
then define «;, fori € {3,4,7,8,...,4g —1,4g -2} =J +2by

1

aj42 = otj_ forall j € J. (5.1b)

A vector in the tangent space T, G28 then has the form o+ H, where H € 525' has components
(Hj)jes; we set

Hjyo = —Ad(e;)H; forall j e J. (5.1¢)

The 2-form £2’ on G2¢, defined on vectors ¢ W, ¢ Z € Tang by
1 _ -
Q'@W,aZ) = 5 Z e\ Wi, £ 20, (5.2a)
I<ik<4dg

where f; = Ad(w;...a)) foreachi € {1,...,4g}, fo is the identity map, and

1 ifi <k,
€ixr=1-1 ifi>k, (3.2b)
0 ifi=k
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By appropriate left-translation, the derivative of K, at « may be taken to be a map
dK, : 523 — g; denote by dK,(a)* : g — 5_23 its adjoint with respect to the metric on g.
Here are some useful properties of £2” (proofs may be found in [4] or [7]):

Proposition 5.1.
(1) £2' is G-invariant.
(@ii) .Q!’, (A,B)isOifA e Tszg is tangent to a smooth path lying on Izg_l(z) and B is
tangent to the G-orbit through p.
(ili) d2'(A, B) = 0if A, B are tangent to K ' (2).
(iv) Lety, : G — K z 1(2) : x > xax~! be the orbit map. Recall the product commutator
map 128 1 G% > G. Ifa e Izg_l(z) then

2} odyy = dK, ()", (5.3)
where §2,;, is specified by $2'(X,Y) = (X, 2,Y).

Eq. (5.3) says that dK ¢ is like a moment map.

Recall thatwhen G = SU(2), K (I is the union of manifolds Faeg-2), Fag, Fo, while
for G = SO(3), K; ! (2) is the union of manifolds F3(g2)(2), F24(2), F2g-2(2), Fo(2),
where Fo4(z) is empty if z = —1. The corresponding quotients under the conjugation
action of G are denoted Mg(z) (if G = SU(2), z can only be I and we drop it from the
notation sometimes), with k € {3(2¢g — 2), 2¢g, 2¢g — 2, 0}.

Proposition 5.2. There is a unique smooth closed 2-form 2 on each stratum of Mg(z),
whose lift to each of the manifolds which make up K, Y(2) is 2’ restricted to that
manifold.

Proof. As proved in Section 3 in all the separate cases, the quotient map K g o) -
K g 1(2)/ G is a fiber bundle projection over each Mg (2). Thus £2' can be pulled down by
smooth local sections. The properties of £2’ listed in Proposition 5.1(i) and (ii) imply that
if 5 and s, are two smooth local sections of K . ) > K . '(2)/G in a neighborhood
of some point in Mg(z) then 572’ = s32'. Thus we can define £2 unambiguously as
the 2-form, on each Mg (z), given locally by pullbacks of £2’ by smooth local sections of
K c ) > K P 1(2)/G. Since d2" = 0 on K 2 I(z) and the fiber-bundle projection map is
a submersion, it follows that d§2 = 0. O

6. The symplectic structure on the SU (2) moduli spaces M2

In this section we shall work with the moduli space of flat SU(2) connections. The
group SU(2) is equipped with a fixed Ad-invariant metric (-, -). We will show that Risa
symplectic structure on Mg o and we will determine the corresponding symplectic volumes.
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It has been proven in several works ([5], for instance) that 2 is symplectic on Mg(Z 2=2)

and the volume volﬁ(./\/tg(2 g_2)) has also been determined in a variety of ways [3,9].

Let T be a maximal torus in SU(2), and n € N(T)\T, where N(T) is the normal-
izer of T in SU(2). The two-element group W = {I, n} acts freely on T28\{£1}*¢ by
conjugation. Let 7, be the subset of K ¢ WD c su®R)* consisting of all points where
the isotropy group of the conjugation action of SU(2) is a maximal torus in SU(2). By
definition, Mgg = F24/SU(2). Recall from (2.10c) that the inclusion map T2\{+1}*8 C

Fyg induces a diffeomorphism @ : T2\{+1}%/W — Fa/SUQ2) = M3, Thus 2
on Mgg is simply the projection on T28\{£I}?8/W of the restriction £2|T28\{+1}?%.

inclusion

T2\ (1) — Fag C SU(@2)%

! ! (6.1a)

Sl

TR\ /W —  Fpp/SUQ) = MY,

Recall that we are working with a fixed Ad-invariant metric (-, -} on the Lie algebra of
SU (2), and the symplectic form 2 is defined in terms of this metric.

Proposition 6.1.
(i) The restriction of 2 to T?8 is given on vectors HV, H® e T, T?¢ by

g
2 HD, H?) =3 (A", B?) - (4, B, (6.1b)
i=1
where HD = x . (Agl), B}]), e, Ag,]), Bél)), and H® is related similarly to the
(2 (2)
A;” and Bi_.
(ii) The 2-form 2 on C(Z)g is a symplectic form. B
(iii) The volume of Mg p with respect to the symplectic form 2 is

volg(M3,) = J[4mvol(SU @)1/, (6.1c)
where vol(SU (2)) is the volume of SU (2) with repect to the metric (-, -).

Proof. Since each component of x is in T, it follows that, in the notation of Eq. (6.1b),
fl:ll (X) = X foreveryi € {1,...,4g} and every X € ¢, the Lie algebra of T. Moreover,

in (5.2a), W and Z have the form (A%, B, —A, " . AP, B —AP, —BD).
Using this in (5.2a) we see that the term involving Agl) is:

a0+ B? — A? - B® 1.0)
+3(—aV0- 4% ~B® — B 10)= (A", B?).
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Similarly, the term involving B{" in Eq. (5.2a) equals —(B{", A'”). Adding up over

i=1,...,gyields Eq. (6.1b).

We can see directly from (6.1b) that £2’|T28 is invariant under W and thus induces a
2-form £2 on the quotient ~ M9 .- Moreover, the 2-form 2'|T?8 given in (6.1b), being a
left invariant form on the abelian group T8 is closed; expression (6.1b) also shows that it
is non-degenerate. Since the quotient map (T2¢\{£1}) — Mg B is a local diffeomorphism,

we conclude that £2 is also a symplectic form.
From (6.1b) we see that the matrix for £2|728 relative to a suitable orthonormal basis
has block-diagonal form, with each block being

0 1Y\,
-1 0)/)’
thus | det(£2'|T7%8)| = 1, and so
volgri72g (TP\[£1}Y8) = vol g 72 (T8) = vol(T)?8,
where the last term is the Riemannian volume (=length) of T. Now SU(2), being a 3-

sphere has volume = 2n2(radius)3, while T, being a great circle in this sphere, has length
2m (radius). Thus

vol(SU(2))

1/3
= ] = [4rvol(SU)]'/3, (6.1d)

vol(T) =27 [

and so
vol gy 2 (TH\(£1)€) = [47vol(SU (2)))%/3,

Since T28\{+1} — Mg ¢ is a two-fold cover, we have the result (6.1c¢). O

7. The symplectic structure on the SO (3) moduli spaces Mg(z)

The determination of the symplectic volumes of the different strata Mg(z) will require
different methods.

7.1. 2 on M3, (D)

The stratum Mg ¢ (1) can be understood in a way very similar to Mgg.

Let T be a maximal torus in SU(2), and T its projection on SO 3). Letn € N(T)\T,
where N (T') is the normalizer of 7" in S O(3). The two-element group W = {I, n} acts freely
on ng\{l }?¢ by conjugation. Let F,,(I) be the subset of K . (I ¢ SO(3)%8 consisting
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of all points where the isotropy group of the conjugation action of S O (3) is a maximal torus
in SO (3). By definition, Mgg(l) = fgg I/S0@3).

Let 7 be the 180° rotation belonging to T. Recall, from Theorem 3.9, the commutative
diagram

T\(I, 7)%¢

l l (7.1a)

TELTP /W —  Fou(D/SOB) = M3, (D)

where the lower horizontal arrow is a diffeomorphism.
Thus §2 on Mg g(I ) is, via the lower horizontal arrow in (7.1a), identifiable as the

inclusion
—

Fao(D) C S0(3)%8

projection on ng\{l , )% /W of the restriction of £2’ to ng\{l , T}?8 (the projection
To\(I, 1)%¢ — T\{1, 7)28/ W is a 2-fold covering).

Recall that we are working with a fixed Ad-invariant metric (-, ) on the Lie algebra of
SU(2), and the symplectic form £2 is defined in terms of this metric.

Proposition 7.1.
(i) The restriction of 2' to T is given on vectors HV H® ¢ TXTZg by

g
2 2 1
2'HO, H?) =Y "a, B?) — (a7, B")), (7.1b)
i=l
where HV = x . (Ail), B](l), R Ag), Bél)), and H® is related similarly to the
2) (2)
A" and Bl._.
(i) The 2-form §2 on Mg g(I ) is a symplectic form.
(iii) The volume of .Mg g(I ) with respect to the symplectic form 2 is

2g/3

1
volg (M3, (1) = 5 [%vol(SU(Z))] (7.1c)

where vol(SU (2)) is the volume of SU (2) with repect to the metric (-, -).

Proof. The argument is virtually the same as in Proposition 6.1. For (iii), we need to observe,
in addition, that

28 28y — =2y e _ L 2g
volg,ﬁzg(T \{xT1} )—V019/|72g(T ) = vol(T)*% = 22gvol(T) ,

where the last equality follows from the fact that SU(2) — SO (3) is a 2-fold covering and
a local isometry. a

7.2. 2 on .Mgg_z(z)

Recall that Mgg_z(z) ~ (128—1 (z)NF)/SO(3), where F is the subset of SO (3)%8 consist-
ing of points where the isotropy group of the S$O(3)-conjugation action is a
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two-element group. Let T be a maximal torus in SO(3), N(T) its normalizer, and B the
subset of N(T)?# where the isotropy group is not a two-element group (described in detail
in (3.11c¢), and (3.11d). We have the commutative diagram

Kl onN@*\By "B K'@nF
ip B v
K\ WNT\BYUNTD 5 (R'@NF)/S0G) =~ M3, ()

(7.22)

where the bottom arrow is a diffeomorphism.

Let N'(T) = N(T)/{I, t}, where T is the 180° rotation in T. The vertical arrow on the
left in (7.2a) is a fiber bundle projection, and in fact it is a principal N'(T)-bundle. Thus
2|MY, _,(2) is the 2-form induced via p by 2'|K;" (z) N (N(T)*\B).

Since the conjugation action of N (T) on N (T)?8 is by isometries, the fiber bundle projec-
tion p induces, in a natural way, a Riemannian metric on [K P L) N (N(T)?8 \B)]/N(T).
We shall equip Mgg_z(z) with the corresponding Riemannian metric induced via ? (A
vector in some T, N (T)%& which is perpendicular to the N (T)-orbit through p is automat-
ically perpendicular to the SO (3)-orbit through p; thus ¥ isan isometry when the domain
and image of ¥ are equipped with the quotient metrics).

We work with J = {1,2,5,6,...,4g —3,4g — 2}, asin (5.1a).

For § C J,recall from (3.16a) and (3.16b) the map ¢y : T N(T)*8.Ifa € ¢5 (ng)
then, by definition of ¢,

o € ,T __ 1fjes, (7.2b)
N@NT if j € J\S.

Thus, for @ € ¢g(7‘—2g),
if j €8,

if j € J\S. (7.20)

1
Ad(@)lt = [ L

where I is the identity map on z.

We have the orbit map y, : N(T) - N(T)% : x — xax~!, whose derivative, at the
identity in ¢, is given by a linear map dy, : ¢t — t%4. On the other hand, we have the
product commutator map K P T T, whose derivative is described by a linear map
dK gla : 1?8 — 1 (all tangent vectors left-translated to the identity).

Lemma 7.2. Forany S C J, and a € ¢s(T)?8,
det(dyy|t) = 2¢/2g — #S = det(dK,|%1). (7.2d)

Proof. Differentiating the expression y,(x) = xax~! at x equal to the identity, we have
forany X € t:

dya(X) = ([Ad(e; ) — 11X)jes-
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Thus, by (7.2¢c), the jth entry of dy,(X) is 0if j € § and itis —2X if j € J\S. Thus
detdy, |t = 2/#(J\S) = 2./2g — #S.
Recall that we write « as («;);es, where J = {1,2,5,6,...,4g — 3,4g — 2}. Then

K'g(a) = Q4g04g-1-- -, Where, foreach j € J, @12 = &j_l andaj € T C SU2) is
any element covering «;. Then

Ko@) 'dKy(@H) =) (i) — [ H;,
jeJd

where f; = Ad(aja;_; - - - o). Taking the adjoint, we have
AR 2 X = ((fi—1 — fix)X)jess (7.2¢)

here we are working with X € ¢, in which case dK X € 28 (the formulas are all valid
for g in place of t). Since Ad(a;)|t = +£1, the different Ad(e;){t’s commute, and so, for
any j € J:

fj+2 = Ad(aj+2(lj+]aj)fj—l
= Ad(e} 'j 1)) fi-1

( r.
=Ad i i—1 = o
(@j+1) fj-1 i_fj_l otherwise,

~ [}

P T | [y ¢ 1N
irjrie€eouvuio T4,

where in the last step we used (7.2¢) and ;7 = ozj_l. Thus

] - . 0 ifj+1eSUS+2),
* —
Jth component of dK, |7 X is = [2fj—1X — 42X otherwise.

Thus

det(dK, %) = 2/2g — #5/,

where S’ = {j € J:j+1 € SU(S +2)}. Now the mapping f : &' = S: j =~ f(j),
where f(j) = jx1according as j 1 € §, is a bijection, So #5" = #S5, and so det(dK,|};)
is as in (7.2d). a

Proposition 7.3. The 2-form ﬁlMg g_z(z) is symplectic. Moreover, on Mg g—2(Z)
Pfaffian(2) = 1, (7.3a)

i.e. the volume measure on Mg g—z(Z) induced by the symplectic form §2 is the same as the
Riemannian volume measure.

Proof. Tt is proved in [5] that

detdy,|t

Pfaffian(2) = ————.
detdK, |t

(7.3b)

(The argument in [5] is for g and —.(—Z_I/\/tg(2 2=2) (z) but is valid without any change in the
present simpler situation.) The result now follows from Lemma 7.2. O
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Proposition 7.4. The symplectic volume, with respect to the symplectic structure $2, of
each connected component of Mgg_z(z) is %[JTVOI(S U2))/2] Qg-2)/3,

Proof. Recall from Theorem 3.20 that Mg e—2 (z) is the union of 228 — 1 connected com-
ponents Mgg_z(z)s, one for each proper subset S of J = {1,2,5,6,...,4g —3,4g — 2},
and M9, ,(2)s = (K o 65) ™" (2)\Bs)/N'(T).

Since the symplectic volume measure vol coincides with the Riemannian volume

measure on Mg g_z(z), it follows from Lemma 4.3 and the determinant values in (7.2d)
that

1 1 . —
vol (M3, »(2)s) = TSP mvol[K;‘(z)n¢s(ng\Bs>], (7.42)

where vol (with no subscript) is Riemannian volume.

Since ¢ is an isometry and By is a submanifold of positive codimension in ng, it follows
that the Riemannian volume appearing on the right side in (7.4a) equals the Riemannian
volume of (K, o ¢5)71(2).

Now, as observed in Proposition 3.17,

(g 0 95)tp)jes = [ [ (7.4b)
jeJ

where fj is any element of T covering t; € T, and, forj=1,5,...,4¢ -3,

0,0 ifj,j+1€8§,

2,00 ifjeSandj+1¢S,
(0,—2) ifj¢Sandj+1eS,
(=2,2) ifj¢Sandj+1¢S.

(mj, mj+1) = (7.40)

Fixing a j, € J\S, the map T2 5 T which carries (xj)jes to the projection
(xj)jes,j+j, is a bijection of (K o ¢5)~'(z) onto 777! The Jacobian of the inverse
map 7‘_23_1 — (Izg ops) 1(z) is (1/|mj,|) /Zjej mj2 The specification of the m; above
shows that this Jacobian equals +/#(J\S). So

1

vol((Kg 0 ¢5) ™' (2)) = v/2g — #S vol(T* 1. (7.4d)

Substituting this into (7.4a), and using vol(T) = %vol(T ), as well as the value of vol(T)
mentioned in (6.1d) we have

1 1 —2g—1
vol=(M? = V28 — #S vol(T #
at 2g—2,S(Z)) vol(T) 2./2g — #S g vol¢ )
1
= —2—vol(T)2g”2
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_LL (vo1<SU(2)>>”3 w
=227\ 22
1

= [%vol(SU(Z))](zg_z)/ ’ o
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